Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4RPGKZeroInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28
31#include "G4SystemOfUnits.hh"
32#include "Randomize.hh"
33
36 G4Nucleus &targetNucleus )
37{
38 const G4HadProjectile *originalIncident = &aTrack;
39
40 // create the target particle
41
42 G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
43
44 if( verboseLevel > 1 )
45 {
46 const G4Material *targetMaterial = aTrack.GetMaterial();
47 G4cout << "G4RPGKZeroInelastic::ApplyYourself called" << G4endl;
48 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
49 G4cout << "target material = " << targetMaterial->GetName() << ", ";
50 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
51 << G4endl;
52 }
53
54 // Fermi motion and evaporation
55 // As of Geant3, the Fermi energy calculation had not been Done
56
57 G4double ek = originalIncident->GetKineticEnergy()/MeV;
58 G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
59 G4ReactionProduct modifiedOriginal;
60 modifiedOriginal = *originalIncident;
61
62 G4double tkin = targetNucleus.Cinema( ek );
63 ek += tkin;
64 modifiedOriginal.SetKineticEnergy( ek*MeV );
65 G4double et = ek + amas;
66 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
67 G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
68 if( pp > 0.0 )
69 {
70 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
71 modifiedOriginal.SetMomentum( momentum * (p/pp) );
72 }
73 //
74 // calculate black track energies
75 //
76 tkin = targetNucleus.EvaporationEffects( ek );
77 ek -= tkin;
78 modifiedOriginal.SetKineticEnergy( ek*MeV );
79 et = ek + amas;
80 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
81 pp = modifiedOriginal.GetMomentum().mag()/MeV;
82 if( pp > 0.0 )
83 {
84 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
85 modifiedOriginal.SetMomentum( momentum * (p/pp) );
86 }
87 G4ReactionProduct currentParticle = modifiedOriginal;
88 G4ReactionProduct targetParticle;
89 targetParticle = *originalTarget;
90 currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
91 targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
92 G4bool incidentHasChanged = false;
93 G4bool targetHasChanged = false;
94 G4bool quasiElastic = false;
95 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
96 G4int vecLen = 0;
97 vec.Initialize( 0 );
98
99 const G4double cutOff = 0.1;
100 if( currentParticle.GetKineticEnergy()/MeV > cutOff )
101 Cascade( vec, vecLen,
102 originalIncident, currentParticle, targetParticle,
103 incidentHasChanged, targetHasChanged, quasiElastic );
104
105 CalculateMomenta( vec, vecLen,
106 originalIncident, originalTarget, modifiedOriginal,
107 targetNucleus, currentParticle, targetParticle,
108 incidentHasChanged, targetHasChanged, quasiElastic );
109
110 SetUpChange( vec, vecLen,
111 currentParticle, targetParticle,
112 incidentHasChanged );
113
114 delete originalTarget;
115 return &theParticleChange;
116}
117
118void G4RPGKZeroInelastic::Cascade(
120 G4int& vecLen,
121 const G4HadProjectile *originalIncident,
122 G4ReactionProduct &currentParticle,
123 G4ReactionProduct &targetParticle,
124 G4bool &incidentHasChanged,
125 G4bool &targetHasChanged,
126 G4bool &quasiElastic )
127{
128 // Derived from H. Fesefeldt's original FORTRAN code CASK0
129 //
130 // K0Short undergoes interaction with nucleon within a nucleus. Check if it is
131 // energetically possible to produce pions/kaons. In not, assume nuclear excitation
132 // occurs and input particle is degraded in energy. No other particles are produced.
133 // If reaction is possible, find the correct number of pions/protons/neutrons
134 // produced using an interpolation to multiplicity data. Replace some pions or
135 // protons/neutrons by kaons or strange baryons according to the average
136 // multiplicity per Inelastic reaction.
137
138 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
139 const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
140 const G4double targetMass = targetParticle.GetMass()/MeV;
141 G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
142 targetMass*targetMass +
143 2.0*targetMass*etOriginal );
144 G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
145 if( availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass()/MeV )
146 {
147 quasiElastic = true;
148 return;
149 }
150 static G4bool first = true;
151 const G4int numMul = 1200;
152 const G4int numSec = 60;
153 static G4double protmul[numMul], protnorm[numSec]; // proton constants
154 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
155 // np = number of pi+, nneg = number of pi-, nz = number of pi0
156 G4int counter, nt=0, np=0, nneg=0, nz=0;
157 const G4double c = 1.25;
158 const G4double b[] = { 0.7, 0.7 };
159 if( first ) // compute normalization constants, this will only be Done once
160 {
161 first = false;
162 G4int i;
163 for( i=0; i<numMul; ++i )protmul[i] = 0.0;
164 for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
165 counter = -1;
166 for( np=0; np<(numSec/3); ++np )
167 {
168 for( nneg=std::max(0,np-1); nneg<=(np+1); ++nneg )
169 {
170 for( nz=0; nz<numSec/3; ++nz )
171 {
172 if( ++counter < numMul )
173 {
174 nt = np+nneg+nz;
175 if( nt>0 && nt<=numSec )
176 {
177 protmul[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
178 protnorm[nt-1] += protmul[counter];
179 }
180 }
181 }
182 }
183 }
184 for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
185 for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
186 counter = -1;
187 for( np=0; np<numSec/3; ++np )
188 {
189 for( nneg=std::max(0,np-2); nneg<=np; ++nneg )
190 {
191 for( nz=0; nz<numSec/3; ++nz )
192 {
193 if( ++counter < numMul )
194 {
195 nt = np+nneg+nz;
196 if( nt>0 && nt<=numSec )
197 {
198 neutmul[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
199 neutnorm[nt-1] += neutmul[counter];
200 }
201 }
202 }
203 }
204 }
205 for( i=0; i<numSec; ++i )
206 {
207 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
208 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
209 }
210 } // end of initialization
211
212 const G4double expxu = 82.; // upper bound for arg. of exp
213 const G4double expxl = -expxu; // lower bound for arg. of exp
219 G4int ieab = static_cast<G4int>(5.0*availableEnergy*MeV/GeV);
220 const G4double supp[] = {0.,0.4,0.55,0.65,0.75,0.82,0.86,0.90,0.94,0.98};
221 G4double test, w0, wp, wt, wm;
222 if( (availableEnergy*MeV/GeV < 2.0) && (G4UniformRand() >= supp[ieab]) )
223 {
224 //
225 // suppress high multiplicity events at low momentum
226 // only one pion will be produced
227 //
228 nneg = np = nz = 0;
229 if( targetParticle.GetDefinition() == aNeutron )
230 {
231 test = std::exp( std::min( expxu, std::max( expxl, -(1.0+b[0])*(1.0+b[0])/(2.0*c*c) ) ) );
232 w0 = test/2.0;
233 test = std::exp( std::min( expxu, std::max( expxl, -(-1.0+b[0])*(1.0+b[0])/(2.0*c*c) ) ) );
234 wm = test*1.5;
235 if( G4UniformRand() < w0/(w0+wm) )
236 nz = 1;
237 else
238 nneg = 1;
239 }
240 else // target is a proton
241 {
242 test = std::exp( std::min( expxu, std::max( expxl, -(1.0+b[1])*(1.0+b[1])/(2.0*c*c) ) ) );
243 w0 = test;
244 wp = test;
245 test = std::exp( std::min( expxu, std::max( expxl, -(-1.0+b[1])*(-1.0+b[1])/(2.0*c*c) ) ) );
246 wm = test;
247 wt = w0+wp+wm;
248 wp += w0;
249 G4double ran = G4UniformRand();
250 if( ran < w0/wt )
251 nz = 1;
252 else if( ran < wp/wt )
253 np = 1;
254 else
255 nneg = 1;
256 }
257 }
258 else // (availableEnergy*MeV/GeV >= 2.0) || (G4UniformRand() < supp[ieab])
259 {
260 G4double n, anpn;
261 GetNormalizationConstant( availableEnergy, n, anpn );
262 G4double ran = G4UniformRand();
263 G4double dum, excs = 0.0;
264 if( targetParticle.GetDefinition() == aProton )
265 {
266 counter = -1;
267 for( np=0; np<numSec/3 && ran>=excs; ++np )
268 {
269 for( nneg=std::max(0,np-1); nneg<=(np+1) && ran>=excs; ++nneg )
270 {
271 for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
272 {
273 if( ++counter < numMul )
274 {
275 nt = np+nneg+nz;
276 if( nt>0 && nt<=numSec )
277 {
278 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
279 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
280 if( std::fabs(dum) < 1.0 )
281 {
282 if( test >= 1.0e-10 )excs += dum*test;
283 }
284 else
285 excs += dum*test;
286 }
287 }
288 }
289 }
290 }
291 if( ran >= excs ) // 3 previous loops continued to the end
292 {
293 quasiElastic = true;
294 return;
295 }
296 np--; nneg--; nz--;
297 }
298 else // target must be a neutron
299 {
300 counter = -1;
301 for( np=0; np<numSec/3 && ran>=excs; ++np )
302 {
303 for( nneg=std::max(0,np-2); nneg<=np && ran>=excs; ++nneg )
304 {
305 for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
306 {
307 if( ++counter < numMul )
308 {
309 nt = np+nneg+nz;
310 if( nt>0 && nt<=numSec )
311 {
312 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
313 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
314 if( std::fabs(dum) < 1.0 )
315 {
316 if( test >= 1.0e-10 )excs += dum*test;
317 }
318 else
319 excs += dum*test;
320 }
321 }
322 }
323 }
324 }
325 if( ran >= excs ) // 3 previous loops continued to the end
326 {
327 quasiElastic = true;
328 return;
329 }
330 np--; nneg--; nz--;
331 }
332 }
333 if( targetParticle.GetDefinition() == aProton )
334 {
335 switch( np-nneg )
336 {
337 case 0:
338 if( G4UniformRand() < 0.25 )
339 {
340 currentParticle.SetDefinitionAndUpdateE( aKaonPlus );
341 targetParticle.SetDefinitionAndUpdateE( aNeutron );
342 incidentHasChanged = true;
343 targetHasChanged = true;
344 }
345 break;
346 case 1:
347 targetParticle.SetDefinitionAndUpdateE( aNeutron );
348 targetHasChanged = true;
349 break;
350 default:
351 targetParticle.SetDefinitionAndUpdateE( aNeutron );
352 targetHasChanged = true;
353 break;
354 }
355 }
356 else // targetParticle is a neutron
357 {
358 switch( np-nneg ) // seems wrong, charge not conserved
359 {
360 case 1:
361 if( G4UniformRand() < 0.5 )
362 {
363 currentParticle.SetDefinitionAndUpdateE( aKaonPlus );
364 incidentHasChanged = true;
365 }
366 else
367 {
368 targetParticle.SetDefinitionAndUpdateE( aProton );
369 targetHasChanged = true;
370 }
371 break;
372 case 2:
373 currentParticle.SetDefinitionAndUpdateE( aKaonPlus );
374 incidentHasChanged = true;
375 targetParticle.SetDefinitionAndUpdateE( aProton );
376 targetHasChanged = true;
377 break;
378 default:
379 break;
380 }
381 }
382
383 if (currentParticle.GetDefinition() == aKaonZS) {
384 if (G4UniformRand() >= 0.5) {
385 currentParticle.SetDefinitionAndUpdateE(aKaonZL);
386 incidentHasChanged = true;
387 }
388 }
389
390 if (targetParticle.GetDefinition() == aKaonZS) {
391 if (G4UniformRand() >= 0.5) {
392 targetParticle.SetDefinitionAndUpdateE(aKaonZL);
393 targetHasChanged = true;
394 }
395 }
396
397 SetUpPions( np, nneg, nz, vec, vecLen );
398 return;
399}
400
401 /* end of file */
402
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
double mag() const
G4ParticleDefinition * GetDefinition() const
void Initialize(G4int items)
Definition: G4FastVector.hh:63
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double GetTotalEnergy() const
static G4KaonPlus * KaonPlus()
Definition: G4KaonPlus.cc:113
static G4KaonZeroLong * KaonZeroLong()
static G4KaonZeroShort * KaonZeroShort()
const G4String & GetName() const
Definition: G4Material.hh:177
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
const G4String & GetParticleName() const
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static G4Proton * Proton()
Definition: G4Proton.cc:93
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4ParticleDefinition * GetDefinition() const
G4double GetMass() const
const G4double pi