Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4CompetitiveFission.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// Hadronic Process: Nuclear De-excitations
30// by V. Lara (Oct 1998)
31//
32// J. M. Quesada (March 2009). Bugs fixed:
33// - Full relativistic calculation (Lorentz boosts)
34// - Fission pairing energy is included in fragment excitation energies
35// Now Energy and momentum are conserved in fission
36
39#include "G4ParticleMomentum.hh"
40#include "G4Pow.hh"
42#include "G4SystemOfUnits.hh"
43
45{
46 theFissionBarrierPtr = new G4FissionBarrier;
47 MyOwnFissionBarrier = true;
48
49 theFissionProbabilityPtr = new G4FissionProbability;
50 MyOwnFissionProbability = true;
51
52 theLevelDensityPtr = new G4FissionLevelDensityParameter;
53 MyOwnLevelDensity = true;
54
55 MaximalKineticEnergy = -1000.0*MeV;
56 FissionBarrier = 0.0;
57 FissionProbability = 0.0;
58 LevelDensityParameter = 0.0;
59}
60
62{
63 if (MyOwnFissionBarrier) delete theFissionBarrierPtr;
64
65 if (MyOwnFissionProbability) delete theFissionProbabilityPtr;
66
67 if (MyOwnLevelDensity) delete theLevelDensityPtr;
68}
69
71{
72 G4int anA = fragment->GetA_asInt();
73 G4int aZ = fragment->GetZ_asInt();
74 G4double ExEnergy = fragment->GetExcitationEnergy() -
76
77
78 // Saddle point excitation energy ---> A = 65
79 // Fission is excluded for A < 65
80 if (anA >= 65 && ExEnergy > 0.0) {
81 FissionBarrier = theFissionBarrierPtr->FissionBarrier(anA,aZ,ExEnergy);
82 MaximalKineticEnergy = ExEnergy - FissionBarrier;
83 LevelDensityParameter =
84 theLevelDensityPtr->LevelDensityParameter(anA,aZ,ExEnergy);
85 FissionProbability =
86 theFissionProbabilityPtr->EmissionProbability(*fragment,MaximalKineticEnergy);
87 }
88 else {
89 MaximalKineticEnergy = -1000.0*MeV;
90 LevelDensityParameter = 0.0;
91 FissionProbability = 0.0;
92 }
93 return FissionProbability;
94}
95
97{
98 // Nucleus data
99 // Atomic number of nucleus
100 G4int A = theNucleus.GetA_asInt();
101 // Charge of nucleus
102 G4int Z = theNucleus.GetZ_asInt();
103 // Excitation energy (in MeV)
104 G4double U = theNucleus.GetExcitationEnergy() -
106 // Check that U > 0
107 if (U <= 0.0) {
108 G4FragmentVector * theResult = new G4FragmentVector;
109 theResult->push_back(new G4Fragment(theNucleus));
110 return theResult;
111 }
112
113 // Atomic Mass of Nucleus (in MeV)
114 G4double M = theNucleus.GetGroundStateMass();
115
116 // Nucleus Momentum
117 G4LorentzVector theNucleusMomentum = theNucleus.GetMomentum();
118
119 // Calculate fission parameters
120 G4FissionParameters theParameters(A,Z,U,FissionBarrier);
121
122 // First fragment
123 G4int A1 = 0;
124 G4int Z1 = 0;
125 G4double M1 = 0.0;
126
127 // Second fragment
128 G4int A2 = 0;
129 G4int Z2 = 0;
130 G4double M2 = 0.0;
131
132 G4double FragmentsExcitationEnergy = 0.0;
133 G4double FragmentsKineticEnergy = 0.0;
134
135 //JMQ 04/03/09 It will be used latter to fix the bug in energy conservation
136 G4double FissionPairingEnergy=
138
139 G4int Trials = 0;
140 do {
141
142 // First fragment
143 A1 = FissionAtomicNumber(A,theParameters);
144 Z1 = FissionCharge(A,Z,A1);
146
147 // Second Fragment
148 A2 = A - A1;
149 Z2 = Z - Z1;
150 if (A2 < 1 || Z2 < 0) {
151 throw G4HadronicException(__FILE__, __LINE__,
152 "G4CompetitiveFission::BreakUp: Can't define second fragment! ");
153 }
155
156 // Check that fragment masses are less or equal than total energy
157 if (M1 + M2 > theNucleusMomentum.e()) {
158 throw G4HadronicException(__FILE__, __LINE__,
159 "G4CompetitiveFission::BreakUp: Fragments Mass > Total Energy");
160 }
161 // Maximal Kinetic Energy (available energy for fragments)
162 G4double Tmax = M + U - M1 - M2;
163
164 FragmentsKineticEnergy = FissionKineticEnergy( A , Z,
165 A1, Z1,
166 A2, Z2,
167 U , Tmax,
168 theParameters);
169
170 // Excitation Energy
171 // FragmentsExcitationEnergy = Tmax - FragmentsKineticEnergy;
172 // JMQ 04/03/09 BUG FIXED: in order to fulfill energy conservation the
173 // fragments carry the fission pairing energy in form of
174 //excitation energy
175
176 FragmentsExcitationEnergy =
177 Tmax - FragmentsKineticEnergy+FissionPairingEnergy;
178
179 } while (FragmentsExcitationEnergy < 0.0 && Trials++ < 100);
180
181 if (FragmentsExcitationEnergy <= 0.0) {
182 throw G4HadronicException(__FILE__, __LINE__,
183 "G4CompetitiveFission::BreakItUp: Excitation energy for fragments < 0.0!");
184 }
185
186 // while (FragmentsExcitationEnergy < 0 && Trials < 100);
187
188 // Fragment 1
189 G4double U1 = FragmentsExcitationEnergy * A1/static_cast<G4double>(A);
190 // Fragment 2
191 G4double U2 = FragmentsExcitationEnergy * A2/static_cast<G4double>(A);
192
193 //JMQ 04/03/09 Full relativistic calculation is performed
194 //
195 G4double Fragment1KineticEnergy=
196 (FragmentsKineticEnergy*(FragmentsKineticEnergy+2*(M2+U2)))
197 /(2*(M1+U1+M2+U2+FragmentsKineticEnergy));
198 G4ParticleMomentum Momentum1(IsotropicVector(std::sqrt(Fragment1KineticEnergy*(Fragment1KineticEnergy+2*(M1+U1)))));
199 G4ParticleMomentum Momentum2(-Momentum1);
200 G4LorentzVector FourMomentum1(Momentum1,std::sqrt(Momentum1.mag2()+(M1+U1)*(M1+U1)));
201 G4LorentzVector FourMomentum2(Momentum2,std::sqrt(Momentum2.mag2()+(M2+U2)*(M2+U2)));
202
203 //JMQ 04/03/09 now we do Lorentz boosts (instead of Galileo boosts)
204 FourMomentum1.boost(theNucleusMomentum.boostVector());
205 FourMomentum2.boost(theNucleusMomentum.boostVector());
206
207 //////////JMQ 04/03: Old version calculation is commented
208 // There was vioation of energy momentum conservation
209
210 // G4double Pmax = std::sqrt( 2 * ( ( (M1+U1)*(M2+U2) ) /
211 // ( (M1+U1)+(M2+U2) ) ) * FragmentsKineticEnergy);
212
213 //G4ParticleMomentum momentum1 = IsotropicVector( Pmax );
214 // G4ParticleMomentum momentum2( -momentum1 );
215
216 // Perform a Galileo boost for fragments
217 // momentum1 += (theNucleusMomentum.boostVector() * (M1+U1));
218 // momentum2 += (theNucleusMomentum.boostVector() * (M2+U2));
219
220
221 // Create 4-momentum for first fragment
222 // Warning!! Energy conservation is broken
223 //JMQ 04/03/09 ...NOT ANY MORE!! BUGS FIXED: Energy and momentum are NOW conserved
224 // G4LorentzVector FourMomentum1( momentum1 , std::sqrt(momentum1.mag2() + (M1+U1)*(M1+U1)));
225
226 // Create 4-momentum for second fragment
227 // Warning!! Energy conservation is broken
228 //JMQ 04/03/09 ...NOT ANY MORE!! BUGS FIXED: Energy and momentum are NOW conserved
229 // G4LorentzVector FourMomentum2( momentum2 , std::sqrt(momentum2.mag2() + (M2+U2)*(M2+U2)));
230
231 //////////
232
233 // Create Fragments
234 G4Fragment * Fragment1 = new G4Fragment( A1, Z1, FourMomentum1);
235 G4Fragment * Fragment2 = new G4Fragment( A2, Z2, FourMomentum2);
236
237 // Create Fragment Vector
238 G4FragmentVector * theResult = new G4FragmentVector;
239
240 theResult->push_back(Fragment1);
241 theResult->push_back(Fragment2);
242
243#ifdef debug
244 CheckConservation(theNucleus,theResult);
245#endif
246
247 return theResult;
248}
249
250G4int
251G4CompetitiveFission::FissionAtomicNumber(G4int A,
252 const G4FissionParameters & theParam)
253 // Calculates the atomic number of a fission product
254{
255
256 // For Simplicity reading code
257 const G4double A1 = theParam.GetA1();
258 const G4double A2 = theParam.GetA2();
259 const G4double As = theParam.GetAs();
260 // const G4double Sigma1 = theParam.GetSigma1();
261 const G4double Sigma2 = theParam.GetSigma2();
262 const G4double SigmaS = theParam.GetSigmaS();
263 const G4double w = theParam.GetW();
264
265 // G4double FasymAsym = 2.0*std::exp(-((A2-As)*(A2-As))/(2.0*Sigma2*Sigma2)) +
266 // std::exp(-((A1-As)*(A1-As))/(2.0*Sigma1*Sigma1));
267
268 // G4double FsymA1A2 = std::exp(-((As-(A1+A2))*(As-(A1+A2)))/(2.0*SigmaS*SigmaS));
269
270 G4double C2A = A2 + 3.72*Sigma2;
271 G4double C2S = As + 3.72*SigmaS;
272
273 G4double C2 = 0.0;
274 if (w > 1000.0 ) C2 = C2S;
275 else if (w < 0.001) C2 = C2A;
276 else C2 = std::max(C2A,C2S);
277
278 G4double C1 = A-C2;
279 if (C1 < 30.0) {
280 C2 = A-30.0;
281 C1 = 30.0;
282 }
283
284 G4double Am1 = (As + A1)/2.0;
285 G4double Am2 = (A1 + A2)/2.0;
286
287 // Get Mass distributions as sum of symmetric and asymmetric Gasussians
288 G4double Mass1 = MassDistribution(As,A,theParam);
289 G4double Mass2 = MassDistribution(Am1,A,theParam);
290 G4double Mass3 = MassDistribution(A1,A,theParam);
291 G4double Mass4 = MassDistribution(Am2,A,theParam);
292 G4double Mass5 = MassDistribution(A2,A,theParam);
293 // get maximal value among Mass1,...,Mass5
294 G4double MassMax = Mass1;
295 if (Mass2 > MassMax) MassMax = Mass2;
296 if (Mass3 > MassMax) MassMax = Mass3;
297 if (Mass4 > MassMax) MassMax = Mass4;
298 if (Mass5 > MassMax) MassMax = Mass5;
299
300 // Sample a fragment mass number, which lies between C1 and C2
301 G4double xm;
302 G4double Pm;
303 do {
304 xm = C1+G4UniformRand()*(C2-C1);
305 Pm = MassDistribution(xm,A,theParam);
306 } while (MassMax*G4UniformRand() > Pm);
307 G4int ires = G4lrint(xm);
308
309 return ires;
310}
311
313G4CompetitiveFission::MassDistribution(G4double x, G4double A,
314 const G4FissionParameters & theParam)
315 // This method gives mass distribution F(x) = F_{asym}(x)+w*F_{sym}(x)
316 // which consist of symmetric and asymmetric sum of gaussians components.
317{
318 G4double Xsym = std::exp(-0.5*(x-theParam.GetAs())*(x-theParam.GetAs())/
319 (theParam.GetSigmaS()*theParam.GetSigmaS()));
320
321 G4double Xasym = std::exp(-0.5*(x-theParam.GetA2())*(x-theParam.GetA2())/
322 (theParam.GetSigma2()*theParam.GetSigma2())) +
323 std::exp(-0.5*(x-(A-theParam.GetA2()))*(x-(A-theParam.GetA2()))/
324 (theParam.GetSigma2()*theParam.GetSigma2())) +
325 0.5*std::exp(-0.5*(x-theParam.GetA1())*(x-theParam.GetA1())/
326 (theParam.GetSigma1()*theParam.GetSigma1())) +
327 0.5*std::exp(-0.5*(x-(A-theParam.GetA1()))*(x-(A-theParam.GetA1()))/
328 (theParam.GetSigma1()*theParam.GetSigma1()));
329
330 if (theParam.GetW() > 1000) return Xsym;
331 else if (theParam.GetW() < 0.001) return Xasym;
332 else return theParam.GetW()*Xsym+Xasym;
333}
334
335G4int G4CompetitiveFission::FissionCharge(G4double A, G4double Z,
336 G4double Af)
337 // Calculates the charge of a fission product for a given atomic number Af
338{
339 const G4double sigma = 0.6;
340 G4double DeltaZ = 0.0;
341 if (Af >= 134.0) DeltaZ = -0.45; // 134 <= Af
342 else if (Af <= (A-134.0)) DeltaZ = 0.45; // Af <= (A-134)
343 else DeltaZ = -0.45*(Af-(A/2.0))/(134.0-(A/2.0)); // (A-134) < Af < 134
344
345 G4double Zmean = (Af/A)*Z + DeltaZ;
346
347 G4double theZ;
348 do {
349 theZ = G4RandGauss::shoot(Zmean,sigma);
350 } while (theZ < 1.0 || theZ > (Z-1.0) || theZ > Af);
351 // return static_cast<G4int>(theZ+0.5);
352 return static_cast<G4int>(theZ+0.5);
353}
354
356G4CompetitiveFission::FissionKineticEnergy(G4int A, G4int Z,
357 G4double Af1, G4double /*Zf1*/,
358 G4double Af2, G4double /*Zf2*/,
359 G4double /*U*/, G4double Tmax,
360 const G4FissionParameters & theParam)
361 // Gives the kinetic energy of fission products
362{
363 // Find maximal value of A for fragments
364 G4double AfMax = std::max(Af1,Af2);
365 if (AfMax < (A/2.0)) AfMax = A - AfMax;
366
367 // Weights for symmetric and asymmetric components
368 G4double Pas;
369 if (theParam.GetW() > 1000) Pas = 0.0;
370 else {
371 G4double P1 = 0.5*std::exp(-0.5*(AfMax-theParam.GetA1())*(AfMax-theParam.GetA1())/
372 (theParam.GetSigma1()*theParam.GetSigma1()));
373
374 G4double P2 = std::exp(-0.5*(AfMax-theParam.GetA2())*(AfMax-theParam.GetA2())/
375 (theParam.GetSigma2()*theParam.GetSigma2()));
376
377 Pas = P1+P2;
378 }
379
380 G4double Ps;
381 if (theParam.GetW() < 0.001) Ps = 0.0;
382 else {
383 Ps = theParam.GetW()*std::exp(-0.5*(AfMax-theParam.GetAs())*(AfMax-theParam.GetAs())/
384 (theParam.GetSigmaS()*theParam.GetSigmaS()));
385 }
386 G4double Psy = Ps/(Pas+Ps);
387
388 // Fission fractions Xsy and Xas formed in symmetric and asymmetric modes
389 G4double PPas = theParam.GetSigma1() + 2.0 * theParam.GetSigma2();
390 G4double PPsy = theParam.GetW() * theParam.GetSigmaS();
391 G4double Xas = PPas / (PPas+PPsy);
392 G4double Xsy = PPsy / (PPas+PPsy);
393
394 // Average kinetic energy for symmetric and asymmetric components
395 G4double Eaverage = 0.1071*MeV*(Z*Z)/G4Pow::GetInstance()->Z13(A) + 22.2*MeV;
396
397
398 // Compute maximal average kinetic energy of fragments and Energy Dispersion (sqrt)
399 G4double TaverageAfMax;
400 G4double ESigma;
401 // Select randomly fission mode (symmetric or asymmetric)
402 if (G4UniformRand() > Psy) { // Asymmetric Mode
403 G4double A11 = theParam.GetA1()-0.7979*theParam.GetSigma1();
404 G4double A12 = theParam.GetA1()+0.7979*theParam.GetSigma1();
405 G4double A21 = theParam.GetA2()-0.7979*theParam.GetSigma2();
406 G4double A22 = theParam.GetA2()+0.7979*theParam.GetSigma2();
407 // scale factor
408 G4double ScaleFactor = 0.5*theParam.GetSigma1()*(AsymmetricRatio(A,A11)+AsymmetricRatio(A,A12))+
409 theParam.GetSigma2()*(AsymmetricRatio(A,A21)+AsymmetricRatio(A,A22));
410 // Compute average kinetic energy for fragment with AfMax
411 TaverageAfMax = (Eaverage + 12.5 * Xsy) * (PPas/ScaleFactor) * AsymmetricRatio(A,AfMax);
412 ESigma = 10.0*MeV; // MeV
413
414 } else { // Symmetric Mode
415 G4double As0 = theParam.GetAs() + 0.7979*theParam.GetSigmaS();
416 // scale factor
417 G4double ScaleFactor = theParam.GetW()*theParam.GetSigmaS()*SymmetricRatio(A,As0);
418 // Compute average kinetic energy for fragment with AfMax
419 TaverageAfMax = (Eaverage - 12.5*MeV*Xas) * (PPsy/ScaleFactor) * SymmetricRatio(A,AfMax);
420 ESigma = 8.0*MeV;
421 }
422
423
424 // Select randomly, in accordance with Gaussian distribution, fragment kinetic energy
425 G4double KineticEnergy;
426 G4int i = 0;
427 do {
428 KineticEnergy = G4RandGauss::shoot(TaverageAfMax,ESigma);
429 if (i++ > 100) return Eaverage;
430 } while (KineticEnergy < Eaverage-3.72*ESigma ||
431 KineticEnergy > Eaverage+3.72*ESigma ||
432 KineticEnergy > Tmax);
433
434 return KineticEnergy;
435}
436
437G4double G4CompetitiveFission::AsymmetricRatio(G4int A, G4double A11)
438{
439 const G4double B1 = 23.5;
440 const G4double A00 = 134.0;
441 return Ratio(G4double(A),A11,B1,A00);
442}
443
444G4double G4CompetitiveFission::SymmetricRatio(G4int A, G4double A11)
445{
446 const G4double B1 = 5.32;
447 const G4double A00 = A/2.0;
448 return Ratio(G4double(A),A11,B1,A00);
449}
450
451G4double G4CompetitiveFission::Ratio(G4double A, G4double A11,
452 G4double B1, G4double A00)
453{
454 if (A == 0.0) {
455 throw G4HadronicException(__FILE__, __LINE__,
456 "G4CompetitiveFission::Ratio: A == 0!");
457 }
458 if (A11 >= A/2.0 && A11 <= (A00+10.0)) {
459 return 1.0-B1*((A11-A00)/A)*((A11-A00)/A);
460 } else {
461 return 1.0-B1*(10.0/A)*(10.0/A)-2.0*(10.0/A)*B1*((A11-A00-10.0)/A);
462 }
463}
464
465G4ThreeVector G4CompetitiveFission::IsotropicVector(const G4double Magnitude)
466 // Samples a isotropic random vectorwith a magnitud given by Magnitude.
467 // By default Magnitude = 1.0
468{
469 G4double CosTheta = 1.0 - 2.0*G4UniformRand();
470 G4double SinTheta = std::sqrt(1.0 - CosTheta*CosTheta);
471 G4double Phi = twopi*G4UniformRand();
472 G4ThreeVector Vector(Magnitude*std::cos(Phi)*SinTheta,
473 Magnitude*std::sin(Phi)*SinTheta,
474 Magnitude*CosTheta);
475 return Vector;
476}
477
478#ifdef debug
479void G4CompetitiveFission::CheckConservation(const G4Fragment & theInitialState,
480 G4FragmentVector * Result) const
481{
482 G4double ProductsEnergy =0;
483 G4ThreeVector ProductsMomentum;
484 G4int ProductsA = 0;
485 G4int ProductsZ = 0;
486 G4FragmentVector::iterator h;
487 for (h = Result->begin(); h != Result->end(); h++) {
488 G4LorentzVector tmp = (*h)->GetMomentum();
489 ProductsEnergy += tmp.e();
490 ProductsMomentum += tmp.vect();
491 ProductsA += (*h)->GetA_asInt();
492 ProductsZ += (*h)->GetZ_asInt();
493 }
494
495 if (ProductsA != theInitialState.GetA_asInt()) {
496 G4cout << "!!!!!!!!!! Baryonic Number Conservation Violation !!!!!!!!!!" << G4endl;
497 G4cout << "G4CompetitiveFission.cc: Barionic Number Conservation test for fission fragments"
498 << G4endl;
499 G4cout << "Initial A = " << theInitialState.GetA_asInt()
500 << " Fragments A = " << ProductsA << " Diference --> "
501 << theInitialState.GetA_asInt() - ProductsA << G4endl;
502 }
503 if (ProductsZ != theInitialState.GetZ_asInt()) {
504 G4cout << "!!!!!!!!!! Charge Conservation Violation !!!!!!!!!!" << G4endl;
505 G4cout << "G4CompetitiveFission.cc: Charge Conservation test for fission fragments"
506 << G4endl;
507 G4cout << "Initial Z = " << theInitialState.GetZ_asInt()
508 << " Fragments Z = " << ProductsZ << " Diference --> "
509 << theInitialState.GetZ() - ProductsZ << G4endl;
510 }
511 if (std::fabs(ProductsEnergy-theInitialState.GetMomentum().e()) > 1.0*keV) {
512 G4cout << "!!!!!!!!!! Energy Conservation Violation !!!!!!!!!!" << G4endl;
513 G4cout << "G4CompetitiveFission.cc: Energy Conservation test for fission fragments"
514 << G4endl;
515 G4cout << "Initial E = " << theInitialState.GetMomentum().e()/MeV << " MeV"
516 << " Fragments E = " << ProductsEnergy/MeV << " MeV Diference --> "
517 << (theInitialState.GetMomentum().e() - ProductsEnergy)/MeV << " MeV" << G4endl;
518 }
519 if (std::fabs(ProductsMomentum.x()-theInitialState.GetMomentum().x()) > 1.0*keV ||
520 std::fabs(ProductsMomentum.y()-theInitialState.GetMomentum().y()) > 1.0*keV ||
521 std::fabs(ProductsMomentum.z()-theInitialState.GetMomentum().z()) > 1.0*keV) {
522 G4cout << "!!!!!!!!!! Momentum Conservation Violation !!!!!!!!!!" << G4endl;
523 G4cout << "G4CompetitiveFission.cc: Momentum Conservation test for fission fragments"
524 << G4endl;
525 G4cout << "Initial P = " << theInitialState.GetMomentum().vect() << " MeV"
526 << " Fragments P = " << ProductsMomentum << " MeV Diference --> "
527 << theInitialState.GetMomentum().vect() - ProductsMomentum << " MeV" << G4endl;
528 }
529 return;
530}
531#endif
532
533
534
535
#define A00
#define A22
#define A12
#define A21
#define A11
std::vector< G4Fragment * > G4FragmentVector
Definition: G4Fragment.hh:65
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define C1
#define G4UniformRand()
Definition: Randomize.hh:53
double z() const
double x() const
double mag2() const
double y() const
Hep3Vector boostVector() const
HepLorentzVector & boost(double, double, double)
Hep3Vector vect() const
virtual G4double GetEmissionProbability(G4Fragment *theNucleus)
virtual G4FragmentVector * BreakUp(const G4Fragment &theNucleus)
G4double GetA1(void) const
G4double GetAs(void) const
G4double GetSigma1(void) const
G4double GetW(void) const
G4double GetSigmaS(void) const
G4double GetSigma2(void) const
G4double GetA2(void) const
G4double GetGroundStateMass() const
Definition: G4Fragment.hh:240
G4double GetExcitationEnergy() const
Definition: G4Fragment.hh:235
const G4LorentzVector & GetMomentum() const
Definition: G4Fragment.hh:251
G4double GetZ() const
Definition: G4Fragment.hh:278
G4int GetZ_asInt() const
Definition: G4Fragment.hh:223
G4int GetA_asInt() const
Definition: G4Fragment.hh:218
G4double GetIonMass(G4int Z, G4int A, G4int L=0) const
!! Only ground states are supported now
Definition: G4IonTable.cc:774
static G4PairingCorrection * GetInstance()
G4double GetFissionPairingCorrection(G4int A, G4int Z) const
static G4ParticleTable * GetParticleTable()
G4IonTable * GetIonTable()
static G4Pow * GetInstance()
Definition: G4Pow.cc:50
G4double Z13(G4int Z)
Definition: G4Pow.hh:110
virtual G4double EmissionProbability(const G4Fragment &fragment, const G4double anEnergy)=0
virtual G4double FissionBarrier(G4int A, G4int Z, const G4double U)=0
virtual G4double LevelDensityParameter(G4int A, G4int Z, G4double U) const =0
int G4lrint(double ad)
Definition: templates.hh:163