Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LEDeuteronInelastic Class Reference

#include <G4LEDeuteronInelastic.hh>

+ Inheritance diagram for G4LEDeuteronInelastic:

Public Member Functions

 G4LEDeuteronInelastic ()
 
 ~G4LEDeuteronInelastic ()
 
G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
virtual void ModelDescription (std::ostream &outFile) const
 
- Public Member Functions inherited from G4InelasticInteraction
 G4InelasticInteraction (const G4String &name="LEInelastic")
 
virtual ~G4InelasticInteraction ()
 
void RegisterIsotopeProductionModel (G4VIsotopeProduction *aModel)
 
void TurnOnIsotopeProduction ()
 
virtual const std::pair< G4double, G4doubleGetFatalEnergyCheckLevels () const
 
- Public Member Functions inherited from G4HadronicInteraction
 G4HadronicInteraction (const G4String &modelName="HadronicModel")
 
virtual ~G4HadronicInteraction ()
 
virtual G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)=0
 
virtual G4double SampleInvariantT (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
virtual G4bool IsApplicable (const G4HadProjectile &, G4Nucleus &)
 
G4double GetMinEnergy () const
 
G4double GetMinEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMinEnergy (G4double anEnergy)
 
void SetMinEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMinEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4double GetMaxEnergy () const
 
G4double GetMaxEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMaxEnergy (const G4double anEnergy)
 
void SetMaxEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMaxEnergy (G4double anEnergy, const G4Material *aMaterial)
 
const G4HadronicInteractionGetMyPointer () const
 
G4int GetVerboseLevel () const
 
void SetVerboseLevel (G4int value)
 
const G4StringGetModelName () const
 
void DeActivateFor (const G4Material *aMaterial)
 
void ActivateFor (const G4Material *aMaterial)
 
void DeActivateFor (const G4Element *anElement)
 
void ActivateFor (const G4Element *anElement)
 
G4bool IsBlocked (const G4Material *aMaterial) const
 
G4bool IsBlocked (const G4Element *anElement) const
 
void SetRecoilEnergyThreshold (G4double val)
 
G4double GetRecoilEnergyThreshold () const
 
G4bool operator== (const G4HadronicInteraction &right) const
 
G4bool operator!= (const G4HadronicInteraction &right) const
 
virtual const std::pair< G4double, G4doubleGetFatalEnergyCheckLevels () const
 
virtual std::pair< G4double, G4doubleGetEnergyMomentumCheckLevels () const
 
void SetEnergyMomentumCheckLevels (G4double relativeLevel, G4double absoluteLevel)
 
virtual void ModelDescription (std::ostream &outFile) const
 

Additional Inherited Members

- Static Public Member Functions inherited from G4InelasticInteraction
static G4IsoParticleChangeGetIsotopeProductionInfo ()
 
- Protected Member Functions inherited from G4InelasticInteraction
G4double Pmltpc (G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
 
G4bool MarkLeadingStrangeParticle (const G4ReactionProduct &currentParticle, const G4ReactionProduct &targetParticle, G4ReactionProduct &leadParticle)
 
void SetUpPions (const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen)
 
void Rotate (G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen)
 
void GetNormalizationConstant (const G4double availableEnergy, G4double &n, G4double &anpn)
 
void CalculateMomenta (G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
 
void SetUpChange (G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
 
void DoIsotopeCounting (const G4HadProjectile *theProjectile, const G4Nucleus &aNucleus)
 
G4IsoResultExtractResidualNucleus (const G4Nucleus &aNucleus)
 
- Protected Member Functions inherited from G4HadronicInteraction
void SetModelName (const G4String &nam)
 
G4bool IsBlocked () const
 
void Block ()
 
- Protected Attributes inherited from G4InelasticInteraction
G4bool isotopeProduction
 
G4ReactionDynamics theReactionDynamics
 
- Protected Attributes inherited from G4HadronicInteraction
G4HadFinalState theParticleChange
 
G4int verboseLevel
 
G4double theMinEnergy
 
G4double theMaxEnergy
 
G4bool isBlocked
 

Detailed Description

Definition at line 45 of file G4LEDeuteronInelastic.hh.

Constructor & Destructor Documentation

◆ G4LEDeuteronInelastic()

G4LEDeuteronInelastic::G4LEDeuteronInelastic ( )
inline

Definition at line 49 of file G4LEDeuteronInelastic.hh.

49 : G4InelasticInteraction("G4LEDeuteronInelastic")
50 {
51 SetMinEnergy( 0.0 );
52 // SetMaxEnergy( 100.*CLHEP::MeV ); // NUCREC only worked for energies < 100MeV
53 // Work around to avoid exception in G4EnergyRangeManager
54 SetMaxEnergy( 10.*CLHEP::TeV ); // NUCREC only worked for energies < 100MeV
55 G4cout << "WARNING: model G4LEDeuteronInelastic is being deprecated and will\n"
56 << "disappear in Geant4 version 10.0" << G4endl;
57 }
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
void SetMinEnergy(G4double anEnergy)
void SetMaxEnergy(const G4double anEnergy)

◆ ~G4LEDeuteronInelastic()

G4LEDeuteronInelastic::~G4LEDeuteronInelastic ( )
inline

Definition at line 59 of file G4LEDeuteronInelastic.hh.

59{}

Member Function Documentation

◆ ApplyYourself()

G4HadFinalState * G4LEDeuteronInelastic::ApplyYourself ( const G4HadProjectile aTrack,
G4Nucleus targetNucleus 
)
virtual

Implements G4HadronicInteraction.

Definition at line 51 of file G4LEDeuteronInelastic.cc.

53{
55 const G4HadProjectile* originalIncident = &aTrack;
56
57 if (verboseLevel > 1) {
58 const G4Material *targetMaterial = aTrack.GetMaterial();
59 G4cout << "G4LEDeuteronInelastic::ApplyYourself called" << G4endl;
60 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
61 G4cout << "target material = " << targetMaterial->GetName() << ", ";
62 }
63
64 // Work-around for lack of model above 100 MeV
65 if (originalIncident->GetKineticEnergy()/MeV > 100. ||
66 originalIncident->GetKineticEnergy() <= 0.1*MeV) {
70 return &theParticleChange;
71 }
72
73 G4double A = targetNucleus.GetA_asInt();
74 G4double Z = targetNucleus.GetZ_asInt();
75 G4double theAtomicMass = targetNucleus.AtomicMass(A, Z);
76 G4double massVec[9];
77 massVec[0] = targetNucleus.AtomicMass( A+2.0, Z+1.0 );
78 massVec[1] = targetNucleus.AtomicMass( A+1.0, Z+1.0 );
79 massVec[2] = targetNucleus.AtomicMass( A+1.0, Z );
80 massVec[3] = theAtomicMass;
81 massVec[4] = 0.;
82 if (A > 1.0 && A-1.0 > Z)
83 massVec[4] = targetNucleus.AtomicMass(A-1.0, Z);
84 massVec[5] = 0.;
85 if (A > 2.0 && Z > 1.0 && A-2.0 > Z-1.0)
86 massVec[5] = targetNucleus.AtomicMass(A-2.0, Z-1.0);
87 massVec[6] = 0.;
88 if (A > Z+1.0)
89 massVec[6] = targetNucleus.AtomicMass(A, Z+1.0);
90 massVec[7] = massVec[3];
91 massVec[8] = 0.;
92 if (Z > 1.0) massVec[8] = targetNucleus.AtomicMass(A,Z-1.0);
93
94 G4FastVector<G4ReactionProduct,4> vec; // vec will contain the secondary particles
95 G4int vecLen = 0;
96 vec.Initialize( 0 );
97
98 theReactionDynamics.NuclearReaction(vec, vecLen, originalIncident,
99 targetNucleus, theAtomicMass, massVec);
100
101 G4double p = vec[0]->GetMomentum().mag();
102 theParticleChange.SetMomentumChange( vec[0]->GetMomentum() * (1.0/p) );
103 theParticleChange.SetEnergyChange( vec[0]->GetKineticEnergy() );
104 delete vec[0];
105
106 if (vecLen <= 1)
107 {
111 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
112 return &theParticleChange;
113 }
114
116 for (G4int i=1; i<vecLen; ++i) {
117 pd = new G4DynamicParticle();
118 pd->SetDefinition( vec[i]->GetDefinition() );
119 pd->SetMomentum( vec[i]->GetMomentum() );
121 delete vec[i];
122 }
123
124 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
125 return &theParticleChange;
126}
@ isAlive
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
Hep3Vector unit() const
Hep3Vector vect() const
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void SetMomentum(const G4ThreeVector &momentum)
void Initialize(G4int items)
Definition: G4FastVector.hh:63
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4ReactionDynamics theReactionDynamics
void DoIsotopeCounting(const G4HadProjectile *theProjectile, const G4Nucleus &aNucleus)
const G4String & GetName() const
Definition: G4Material.hh:177
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
G4double AtomicMass(const G4double A, const G4double Z) const
Definition: G4Nucleus.cc:240
void NuclearReaction(G4FastVector< G4ReactionProduct, 4 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4Nucleus &aNucleus, const G4double theAtomicMass, const G4double *massVec)

◆ ModelDescription()

void G4LEDeuteronInelastic::ModelDescription ( std::ostream &  outFile) const
virtual

Reimplemented from G4HadronicInteraction.

Definition at line 36 of file G4LEDeuteronInelastic.cc.

37{
38 outFile << "G4LEDeuteronInelastic is one of the Low Energy Parameterized\n"
39 << "(LEP) models used to implement inelastic deuteron scattering\n"
40 << "from nuclei. It is a re-engineered version of the GHEISHA\n"
41 << "code of H. Fesefeldt. It divides the initial collision\n"
42 << "products into backward- and forward-going clusters which are\n"
43 << "then decayed into final state hadrons. The model does not\n"
44 << "conserve energy on an event-by-event basis. It may be\n"
45 << "applied to deuterons with initial energies between 0 and 10\n"
46 << "TeV.\n";
47}

The documentation for this class was generated from the following files: