Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4HeatedKleinNishinaCompton.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// -------------------------------------------------------------------
29//
30// GEANT4 Class file
31//
32//
33// File name: G4HeatedKleinNishinaCompton
34//
35// Author: Vladimir Grichine on base of M. Maire and V. Ivanchenko code
36//
37// Creation date: 15.03.2009
38//
39// Modifications:
40//
41//
42// Class Description:
43//
44// -------------------------------------------------------------------
45//
46//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
47//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
48
50#include "globals.hh"
52#include "G4SystemOfUnits.hh"
53#include "G4RandomDirection.hh"
54#include "Randomize.hh"
55
57#include "G4Electron.hh"
58#include "G4Gamma.hh"
59#include "Randomize.hh"
60#include "G4DataVector.hh"
62
63//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
64
65using namespace std;
66
68 const G4String& nam)
69 : G4VEmModel(nam)
70{
73 lowestGammaEnergy = 1.0*eV;
74 fTemperature = 1.0*keV;
76}
77
78//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
79
81{}
82
83//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
84
86 const G4DataVector&)
87{
89}
90
91////////////////////////////////////////////////////////////////////////////
92//
93//
94
97 G4double GammaEnergy,
100{
101 G4double xSection = 0.0 ;
102 if ( Z < 0.9999 ) return xSection;
103 if ( GammaEnergy < 0.01*keV ) return xSection;
104 // if ( GammaEnergy > (100.*GeV/Z) ) return xSection;
105
106 static const G4double a = 20.0 , b = 230.0 , c = 440.0;
107
108 static const G4double
109 d1= 2.7965e-1*barn, d2=-1.8300e-1*barn, d3= 6.7527 *barn, d4=-1.9798e+1*barn,
110 e1= 1.9756e-5*barn, e2=-1.0205e-2*barn, e3=-7.3913e-2*barn, e4= 2.7079e-2*barn,
111 f1=-3.9178e-7*barn, f2= 6.8241e-5*barn, f3= 6.0480e-5*barn, f4= 3.0274e-4*barn;
112
113 G4double p1Z = Z*(d1 + e1*Z + f1*Z*Z), p2Z = Z*(d2 + e2*Z + f2*Z*Z),
114 p3Z = Z*(d3 + e3*Z + f3*Z*Z), p4Z = Z*(d4 + e4*Z + f4*Z*Z);
115
116 G4double T0 = 15.0*keV;
117 if (Z < 1.5) T0 = 40.0*keV;
118
119 G4double X = max(GammaEnergy, T0) / electron_mass_c2;
120 xSection = p1Z*std::log(1.+2.*X)/X
121 + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X);
122
123 // modification for low energy. (special case for Hydrogen)
124 if (GammaEnergy < T0) {
125 G4double dT0 = 1.*keV;
126 X = (T0+dT0) / electron_mass_c2 ;
127 G4double sigma = p1Z*log(1.+2*X)/X
128 + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X);
129 G4double c1 = -T0*(sigma-xSection)/(xSection*dT0);
130 G4double c2 = 0.150;
131 if (Z > 1.5) c2 = 0.375-0.0556*log(Z);
132 G4double y = log(GammaEnergy/T0);
133 xSection *= exp(-y*(c1+c2*y));
134 }
135 // G4cout << "e= " << GammaEnergy << " Z= " << Z << " cross= " << xSection << G4endl;
136 return xSection;
137}
138
139//////////////////////////////////////////////////////////////////////////
140//
141//
142
143void G4HeatedKleinNishinaCompton::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
145 const G4DynamicParticle* aDynamicGamma,
146 G4double,
147 G4double)
148{
149 // The scattered gamma energy is sampled according to Klein - Nishina formula.
150 // The random number techniques of Butcher & Messel are used
151 // (Nuc Phys 20(1960),15).
152 // Note : Effects due to binding of atomic electrons are negliged.
153
154 // We start to prepare a heated electron from Maxwell distribution.
155 // Then we try to boost to the electron rest frame and make scattering.
156 // The final step is to recover new gamma 4momentum in the lab frame
157
158 G4double eMomentumC2 = CLHEP::RandGamma::shoot(1.5,1.);
159 eMomentumC2 *= 2*electron_mass_c2*fTemperature; // electron (pc)^2
161 eMomDir *= std::sqrt(eMomentumC2);
162 G4double eEnergy = std::sqrt(eMomentumC2+electron_mass_c2*electron_mass_c2);
163 G4LorentzVector electron4v = G4LorentzVector(eMomDir,eEnergy);
164 G4ThreeVector bst = electron4v.boostVector();
165
166 G4LorentzVector gamma4v = aDynamicGamma->Get4Momentum();
167 gamma4v.boost(-bst);
168
169 G4ThreeVector gammaMomV = gamma4v.vect();
170 G4double gamEnergy0 = gammaMomV.mag();
171
172
173 // G4double gamEnergy0 = aDynamicGamma->GetKineticEnergy();
174 G4double E0_m = gamEnergy0 / electron_mass_c2 ;
175
176 // G4ThreeVector gamDirection0 = /aDynamicGamma->GetMomentumDirection();
177
178 G4ThreeVector gamDirection0 = gammaMomV/gamEnergy0;
179
180 // sample the energy rate of the scattered gamma in the electron rest frame
181 //
182
183 G4double epsilon, epsilonsq, onecost, sint2, greject ;
184
185 G4double eps0 = 1./(1. + 2.*E0_m);
186 G4double epsilon0sq = eps0*eps0;
187 G4double alpha1 = - log(eps0);
188 G4double alpha2 = 0.5*(1.- epsilon0sq);
189
190 do
191 {
192 if ( alpha1/(alpha1+alpha2) > G4UniformRand() )
193 {
194 epsilon = exp(-alpha1*G4UniformRand()); // eps0**r
195 epsilonsq = epsilon*epsilon;
196
197 }
198 else
199 {
200 epsilonsq = epsilon0sq + (1.- epsilon0sq)*G4UniformRand();
201 epsilon = sqrt(epsilonsq);
202 };
203
204 onecost = (1.- epsilon)/(epsilon*E0_m);
205 sint2 = onecost*(2.-onecost);
206 greject = 1. - epsilon*sint2/(1.+ epsilonsq);
207
208 } while (greject < G4UniformRand());
209
210 //
211 // scattered gamma angles. ( Z - axis along the parent gamma)
212 //
213
214 G4double cosTeta = 1. - onecost;
215 G4double sinTeta = sqrt (sint2);
216 G4double Phi = twopi * G4UniformRand();
217 G4double dirx = sinTeta*cos(Phi), diry = sinTeta*sin(Phi), dirz = cosTeta;
218
219 //
220 // update G4VParticleChange for the scattered gamma
221 //
222
223 G4ThreeVector gamDirection1 ( dirx,diry,dirz );
224 gamDirection1.rotateUz(gamDirection0);
225 G4double gamEnergy1 = epsilon*gamEnergy0;
226 gamDirection1 *= gamEnergy1;
227
228 G4LorentzVector gamma4vfinal = G4LorentzVector(gamDirection1,gamEnergy1);
229
230
231 // kinematic of the scattered electron
232 //
233
234 G4double eKinEnergy = gamEnergy0 - gamEnergy1;
235 G4ThreeVector eDirection = gamEnergy0*gamDirection0 - gamEnergy1*gamDirection1;
236 eDirection = eDirection.unit();
237 G4double eFinalMom = std::sqrt(eKinEnergy*(eKinEnergy+2*electron_mass_c2));
238 eDirection *= eFinalMom;
239 G4LorentzVector e4vfinal = G4LorentzVector(eDirection,gamEnergy1+electron_mass_c2);
240
241 gamma4vfinal.boost(bst);
242 e4vfinal.boost(bst);
243
244 gamDirection1 = gamma4vfinal.vect();
245 gamEnergy1 = gamDirection1.mag();
246 gamDirection1 /= gamEnergy1;
247
248
249
250
252
253 if( gamEnergy1 > lowestGammaEnergy )
254 {
255 gamDirection1 /= gamEnergy1;
257 }
258 else
259 {
261 gamEnergy1 += fParticleChange->GetLocalEnergyDeposit();
263 }
264
265 eKinEnergy = e4vfinal.t()-electron_mass_c2;
266
267 if( eKinEnergy > DBL_MIN )
268 {
269 // create G4DynamicParticle object for the electron.
270 eDirection = e4vfinal.vect();
271 G4double eFinMomMag = eDirection.mag();
272 eDirection /= eFinMomMag;
273 G4DynamicParticle* dp = new G4DynamicParticle(theElectron,eDirection,eKinEnergy);
274 fvect->push_back(dp);
275 }
276}
277
278//////////////////////////////////////////////////////////////////////////
279
280
CLHEP::HepLorentzVector G4LorentzVector
G4ThreeVector G4RandomDirection()
@ fStopAndKill
double G4double
Definition: G4Types.hh:64
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector unit() const
double mag() const
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
Hep3Vector boostVector() const
HepLorentzVector & boost(double, double, double)
Hep3Vector vect() const
static double shoot()
G4LorentzVector Get4Momentum() const
static G4Electron * Electron()
Definition: G4Electron.cc:94
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A, G4double cut, G4double emax)
G4ParticleChangeForGamma * fParticleChange
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
G4HeatedKleinNishinaCompton(const G4ParticleDefinition *p=0, const G4String &nam="Heated-Klein-Nishina")
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:109
void ProposeTrackStatus(G4TrackStatus status)
G4double GetLocalEnergyDeposit() const
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
#define DBL_MIN
Definition: templates.hh:75