Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LEAntiXiMinusInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// Hadronic Process: AntiXiMinus Inelastic Process
29// J.L. Chuma, TRIUMF, 20-Feb-1997
30// Modified by J.L.Chuma 30-Apr-97: added originalTarget for CalculateMomenta
31//
32// NOTE: The FORTRAN version of the cascade, CASAXM, simply called the
33// routine for the XiMinus particle. Hence, the ApplyYourself function
34// below is just a copy of the ApplyYourself from the XiMinus particle.
35
38#include "G4SystemOfUnits.hh"
39#include "Randomize.hh"
40
41void G4LEAntiXiMinusInelastic::ModelDescription(std::ostream& outFile) const
42{
43 outFile << "G4LEAntiXiMinusInelastic is one of the Low Energy Parameterized\n"
44 << "(LEP) models used to implement inelastic antiXi- scattering\n"
45 << "from nuclei. It is a re-engineered version of the GHEISHA\n"
46 << "code of H. Fesefeldt. It divides the initial collision\n"
47 << "products into backward- and forward-going clusters which are\n"
48 << "then decayed into final state hadrons. The model does not\n"
49 << "conserve energy on an event-by-event basis. It may be applied\n"
50 << "to antiXi- with initial energies between 0 and 25 GeV.\n";
51}
52
55 G4Nucleus& targetNucleus)
56{
57 const G4HadProjectile *originalIncident = &aTrack;
58 if (originalIncident->GetKineticEnergy()<= 0.1*MeV) {
62 return &theParticleChange;
63 }
64
65 // create the target particle
66 G4DynamicParticle* originalTarget = targetNucleus.ReturnTargetParticle();
67
68 if (verboseLevel > 1) {
69 const G4Material *targetMaterial = aTrack.GetMaterial();
70 G4cout << "G4LEAntiXiMinusInelastic::ApplyYourself called" << G4endl;
71 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
72 G4cout << "target material = " << targetMaterial->GetName() << ", ";
73 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
74 << G4endl;
75 }
76
77 // Fermi motion and evaporation
78 // As of Geant3, the Fermi energy calculation had not been Done
79 G4double ek = originalIncident->GetKineticEnergy()/MeV;
80 G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
81 G4ReactionProduct modifiedOriginal;
82 modifiedOriginal = *originalIncident;
83
84 G4double tkin = targetNucleus.Cinema( ek );
85 ek += tkin;
86 modifiedOriginal.SetKineticEnergy( ek*MeV );
87 G4double et = ek + amas;
88 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
89 G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
90 if (pp > 0.0) {
91 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
92 modifiedOriginal.SetMomentum( momentum * (p/pp) );
93 }
94
95 // calculate black track energies
96 tkin = targetNucleus.EvaporationEffects(ek);
97 ek -= tkin;
98 modifiedOriginal.SetKineticEnergy( ek*MeV );
99 et = ek + amas;
100 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
101 pp = modifiedOriginal.GetMomentum().mag()/MeV;
102 if (pp > 0.0) {
103 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
104 modifiedOriginal.SetMomentum( momentum * (p/pp) );
105 }
106 G4ReactionProduct currentParticle = modifiedOriginal;
107 G4ReactionProduct targetParticle;
108 targetParticle = *originalTarget;
109 currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
110 targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
111 G4bool incidentHasChanged = false;
112 G4bool targetHasChanged = false;
113 G4bool quasiElastic = false;
114 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
115 G4int vecLen = 0;
116 vec.Initialize(0);
117
118 const G4double cutOff = 0.1;
119 const G4double anni = std::min( 1.3*currentParticle.GetTotalMomentum()/GeV, 0.4 );
120 if ((currentParticle.GetKineticEnergy()/MeV > cutOff) || (G4UniformRand() > anni) )
121 Cascade(vec, vecLen, originalIncident, currentParticle, targetParticle,
122 incidentHasChanged, targetHasChanged, quasiElastic);
123
124 CalculateMomenta(vec, vecLen, originalIncident, originalTarget,
125 modifiedOriginal, targetNucleus, currentParticle,
126 targetParticle, incidentHasChanged, targetHasChanged,
127 quasiElastic);
128
129 SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged);
130
131 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
132
133 delete originalTarget;
134 return &theParticleChange;
135}
136
137
138void G4LEAntiXiMinusInelastic::Cascade(
140 G4int& vecLen,
141 const G4HadProjectile *originalIncident,
142 G4ReactionProduct &currentParticle,
143 G4ReactionProduct &targetParticle,
144 G4bool &incidentHasChanged,
145 G4bool &targetHasChanged,
146 G4bool &quasiElastic )
147{
148 // derived from original FORTRAN code CASAXM by H. Fesefeldt (17-Jan-1989)
149 // which is just a copy of casxm (cascade for Xi-).
150 //
151 // AntiXiMinus undergoes interaction with nucleon within a nucleus. Check if it is
152 // energetically possible to produce pions/kaons. In not, assume nuclear excitation
153 // occurs and input particle is degraded in energy. No other particles are produced.
154 // If reaction is possible, find the correct number of pions/protons/neutrons
155 // produced using an interpolation to multiplicity data. Replace some pions or
156 // protons/neutrons by kaons or strange baryons according to the average
157 // multiplicity per Inelastic reaction.
158 //
159 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
160 const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
161 const G4double targetMass = targetParticle.GetMass()/MeV;
162 G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
163 targetMass*targetMass +
164 2.0*targetMass*etOriginal );
165 G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
166 if( availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass()/MeV )
167 {
168 quasiElastic = true;
169 return;
170 }
171 static G4bool first = true;
172 const G4int numMul = 1200;
173 const G4int numSec = 60;
174 static G4double protmul[numMul], protnorm[numSec]; // proton constants
175 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
176 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
177 G4int counter, nt=0, npos=0, nneg=0, nzero=0;
178 G4double test;
179 const G4double c = 1.25;
180 const G4double b[] = { 0.7, 0.7 };
181 if( first ) // compute normalization constants, this will only be Done once
182 {
183 first = false;
184 G4int i;
185 for( i=0; i<numMul; ++i )protmul[i] = 0.0;
186 for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
187 counter = -1;
188 for( npos=0; npos<(numSec/3); ++npos )
189 {
190 for( nneg=std::max(0,npos-1); nneg<=(npos+1); ++nneg )
191 {
192 for( nzero=0; nzero<numSec/3; ++nzero )
193 {
194 if( ++counter < numMul )
195 {
196 nt = npos+nneg+nzero;
197 if( nt>0 && nt<=numSec )
198 {
199 protmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[0],c);
200 protnorm[nt-1] += protmul[counter];
201 }
202 }
203 }
204 }
205 }
206 for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
207 for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
208 counter = -1;
209 for( npos=0; npos<numSec/3; ++npos )
210 {
211 for( nneg=npos; nneg<=(npos+2); ++nneg )
212 {
213 for( nzero=0; nzero<numSec/3; ++nzero )
214 {
215 if( ++counter < numMul )
216 {
217 nt = npos+nneg+nzero;
218 if( nt>0 && nt<=numSec )
219 {
220 neutmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[1],c);
221 neutnorm[nt-1] += neutmul[counter];
222 }
223 }
224 }
225 }
226 }
227 for( i=0; i<numSec; ++i )
228 {
229 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
230 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
231 }
232 } // end of initialization
233
234 const G4double expxu = 82.; // upper bound for arg. of exp
235 const G4double expxl = -expxu; // lower bound for arg. of exp
241 //
242 // energetically possible to produce pion(s) --> inelastic scattering
243 //
244 G4double n, anpn;
245 GetNormalizationConstant( availableEnergy, n, anpn );
246 G4double ran = G4UniformRand();
247 G4double dum, excs = 0.0;
248 if( targetParticle.GetDefinition() == aProton )
249 {
250 counter = -1;
251 for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
252 {
253 for( nneg=std::max(0,npos-1); nneg<=(npos+1) && ran>=excs; ++nneg )
254 {
255 for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
256 {
257 if( ++counter < numMul )
258 {
259 nt = npos+nneg+nzero;
260 if( nt>0 && nt<=numSec )
261 {
262 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
263 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
264 if( std::fabs(dum) < 1.0 )
265 {
266 if( test >= 1.0e-10 )excs += dum*test;
267 }
268 else
269 excs += dum*test;
270 }
271 }
272 }
273 }
274 }
275 if( ran >= excs ) // 3 previous loops continued to the end
276 {
277 quasiElastic = true;
278 return;
279 }
280 npos--; nneg--; nzero--;
281 //
282 // number of secondary mesons determined by kno distribution
283 // check for total charge of final state mesons to determine
284 // the kind of baryons to be produced, taking into account
285 // charge and strangeness conservation
286 //
287 if( npos < nneg )
288 {
289 if( npos+1 == nneg )
290 {
291 currentParticle.SetDefinitionAndUpdateE( aXiZero );
292 incidentHasChanged = true;
293 }
294 else // charge mismatch
295 {
296 currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
297 incidentHasChanged = true;
298 //
299 // correct the strangeness by replacing a pi- by a kaon-
300 //
301 vec.Initialize( 1 );
303 p->SetDefinition( aKaonMinus );
304 (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
305 vec.SetElement( vecLen++, p );
306 --nneg;
307 }
308 }
309 else if( npos == nneg )
310 {
311 if( G4UniformRand() >= 0.5 )
312 {
313 currentParticle.SetDefinitionAndUpdateE( aXiZero );
314 incidentHasChanged = true;
315 targetParticle.SetDefinitionAndUpdateE( aNeutron );
316 targetHasChanged = true;
317 }
318 }
319 else
320 {
321 targetParticle.SetDefinitionAndUpdateE( aNeutron );
322 targetHasChanged = true;
323 }
324 }
325 else // target must be a neutron
326 {
327 counter = -1;
328 for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
329 {
330 for( nneg=npos; nneg<=(npos+2) && ran>=excs; ++nneg )
331 {
332 for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
333 {
334 if( ++counter < numMul )
335 {
336 nt = npos+nneg+nzero;
337 if( nt>0 && nt<=numSec )
338 {
339 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
340 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
341 if( std::fabs(dum) < 1.0 )
342 {
343 if( test >= 1.0e-10 )excs += dum*test;
344 }
345 else
346 excs += dum*test;
347 }
348 }
349 }
350 }
351 }
352 if( ran >= excs ) // 3 previous loops continued to the end
353 {
354 quasiElastic = true;
355 return;
356 }
357 npos--; nneg--; nzero--;
358 if( npos+1 < nneg )
359 {
360 if( npos+2 == nneg )
361 {
362 currentParticle.SetDefinitionAndUpdateE( aXiZero );
363 incidentHasChanged = true;
364 targetParticle.SetDefinitionAndUpdateE( aProton );
365 targetHasChanged = true;
366 }
367 else // charge mismatch
368 {
369 currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
370 incidentHasChanged = true;
371 targetParticle.SetDefinitionAndUpdateE( aProton );
372 targetHasChanged = true;
373 //
374 // correct the strangeness by replacing a pi- by a kaon-
375 //
376 vec.Initialize( 1 );
378 p->SetDefinition( aKaonMinus );
379 (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
380 vec.SetElement( vecLen++, p );
381 --nneg;
382 }
383 }
384 else if( npos+1 == nneg )
385 {
386 if( G4UniformRand() < 0.5 )
387 {
388 currentParticle.SetDefinitionAndUpdateE( aXiZero );
389 incidentHasChanged = true;
390 }
391 else
392 {
393 targetParticle.SetDefinitionAndUpdateE( aProton );
394 targetHasChanged = true;
395 }
396 }
397 }
398 SetUpPions( npos, nneg, nzero, vec, vecLen );
399 return;
400}
401
402 /* end of file */
403
@ isAlive
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector unit() const
double mag() const
Hep3Vector vect() const
G4ParticleDefinition * GetDefinition() const
void SetElement(G4int anIndex, Type *anElement)
Definition: G4FastVector.hh:76
void Initialize(G4int items)
Definition: G4FastVector.hh:63
void SetStatusChange(G4HadFinalStateStatus aS)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen)
void CalculateMomenta(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void DoIsotopeCounting(const G4HadProjectile *theProjectile, const G4Nucleus &aNucleus)
void SetUpChange(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:113
virtual void ModelDescription(std::ostream &outFile) const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
const G4String & GetName() const
Definition: G4Material.hh:177
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
const G4String & GetParticleName() const
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static G4Proton * Proton()
Definition: G4Proton.cc:93
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetTotalMomentum() const
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4ParticleDefinition * GetDefinition() const
void SetDefinition(G4ParticleDefinition *aParticleDefinition)
G4double GetMass() const
static G4SigmaPlus * SigmaPlus()
Definition: G4SigmaPlus.cc:108
static G4XiZero * XiZero()
Definition: G4XiZero.cc:106
const G4double pi