Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4MuMinusCaptureCascade Class Reference

#include <G4MuMinusCaptureCascade.hh>

Public Member Functions

 G4MuMinusCaptureCascade ()
 
 ~G4MuMinusCaptureCascade ()
 
G4int DoCascade (const G4double Z, const G4double A, G4GHEKinematicsVector *Cascade)
 
void DoBoundMuonMinusDecay (G4double Z, G4int *nCascade, G4GHEKinematicsVector *Cascade)
 
G4double GetKShellEnergy (G4double Z)
 
G4ThreeVectorGetRandomVec ()
 

Detailed Description

Definition at line 48 of file G4MuMinusCaptureCascade.hh.

Constructor & Destructor Documentation

◆ G4MuMinusCaptureCascade()

G4MuMinusCaptureCascade::G4MuMinusCaptureCascade ( )

Definition at line 55 of file G4MuMinusCaptureCascade.cc.

56{
57 theElectron = G4Electron::Electron();
58 theGamma = G4Gamma::Gamma();
59 Emass = theElectron->GetPDGMass();
61}
static G4Electron * Electron()
Definition: G4Electron.cc:94
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
static G4MuonMinus * MuonMinus()
Definition: G4MuonMinus.cc:100

◆ ~G4MuMinusCaptureCascade()

G4MuMinusCaptureCascade::~G4MuMinusCaptureCascade ( )

Definition at line 65 of file G4MuMinusCaptureCascade.cc.

66{ }

Member Function Documentation

◆ DoBoundMuonMinusDecay()

void G4MuMinusCaptureCascade::DoBoundMuonMinusDecay ( G4double  Z,
G4int nCascade,
G4GHEKinematicsVector Cascade 
)

Definition at line 181 of file G4MuMinusCaptureCascade.cc.

184{
185 // Simulation on Decay of mu- on a K-shell of the muonic atom
186 G4double xmax = ( 1.0 + Emass*Emass/ (MuMass*MuMass) );
187 G4double xmin = 2.0*Emass/MuMass;
188 G4double KEnergy = GetKShellEnergy(Z);
189 /*
190 G4cout << "G4MuMinusCaptureCascade::DoBoundMuonMinusDecay"
191 << " XMAX= " << xmax
192 << " Ebound= " << KEnergy
193 << G4endl;
194 */
195 G4double pmu = std::sqrt(KEnergy*(KEnergy + 2.0*MuMass));
196 G4double emu = KEnergy + MuMass;
197 G4ThreeVector moment = GetRandomVec();
198 G4LorentzVector MU(pmu*moment,emu);
199 G4ThreeVector bst = MU.boostVector();
200
201 G4double Eelect, Pelect, x, ecm;
202 G4LorentzVector EL, NN;
203 // Calculate electron energy
204 do {
205 do {
206 x = xmin + (xmax-xmin)*G4UniformRand();
207 } while (G4UniformRand() > (3.0 - 2.0*x)*x*x );
208 Eelect = x*MuMass*0.5;
209 Pelect = 0.0;
210 if(Eelect > Emass) {
211 Pelect = std::sqrt( Eelect*Eelect - Emass*Emass );
212 } else {
213 Pelect = 0.0;
214 Eelect = Emass;
215 }
216 G4ThreeVector e_mom = GetRandomVec();
217 EL = G4LorentzVector(Pelect*e_mom,Eelect);
218 EL.boost(bst);
219 Eelect = EL.e() - Emass - 2.0*KEnergy;
220 //
221 // Calculate rest frame parameters of 2 neutrinos
222 //
223 NN = MU - EL;
224 ecm = NN.mag2();
225 } while (Eelect < 0.0 || ecm < 0.0);
226
227 //
228 // Create electron
229 //
230 moment = std::sqrt(Eelect * (Eelect + 2.0*Emass))*(EL.vect().unit());
231 AddNewParticle(theElectron, moment, Emass, nCascade, Cascade);
232 //
233 // Create Neutrinos
234 //
235 ecm = 0.5*std::sqrt(ecm);
236 bst = NN.boostVector();
237 G4ThreeVector p1 = ecm * GetRandomVec();
238 G4LorentzVector N1 = G4LorentzVector(p1,ecm);
239 N1.boost(bst);
240 G4ThreeVector p1lab = N1.vect();
241 AddNewParticle(G4AntiNeutrinoE::AntiNeutrinoE(),p1lab,0.0,nCascade,Cascade);
242 NN -= N1;
243 G4ThreeVector p2lab = NN.vect();
244 AddNewParticle(G4NeutrinoMu::NeutrinoMu(),p2lab,0.0,nCascade,Cascade);
245
246 return;
247}
CLHEP::HepLorentzVector G4LorentzVector
double G4double
Definition: G4Types.hh:64
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector boostVector() const
HepLorentzVector & boost(double, double, double)
Hep3Vector vect() const
static G4AntiNeutrinoE * AntiNeutrinoE()
G4double GetKShellEnergy(G4double Z)
static G4NeutrinoMu * NeutrinoMu()
Definition: G4NeutrinoMu.cc:85

Referenced by G4MuonMinusCaptureAtRest::AtRestDoIt().

◆ DoCascade()

G4int G4MuMinusCaptureCascade::DoCascade ( const G4double  Z,
const G4double  A,
G4GHEKinematicsVector Cascade 
)

Definition at line 114 of file G4MuMinusCaptureCascade.cc.

116{
117 // Inicialization - cascade start from 14th level
118 // N.C.Mukhopadhyay Phy. Rep. 30 (1977) 1.
119 G4int nPart = 0;
120 G4double EnergyLevel[14];
121
122 G4double mass = MuMass * massA / (MuMass + massA) ;
123
124 const G4double KEnergy = 13.6 * eV * Z * Z * mass/ electron_mass_c2;
125
126 EnergyLevel[0] = GetKShellEnergy(Z);
127 for( G4int i = 2; i < 15; i++ ) {
128 EnergyLevel[i-1] = KEnergy / (i*i) ;
129 }
130
131 G4int nElec = G4int(Z);
132 G4int nAuger = 1;
133 G4int nLevel = 13;
134 G4double DeltaE;
135 G4double pGamma = Z*Z*Z*Z;
136
137 // Capture on 14-th level
138 G4double ptot = std::sqrt(EnergyLevel[13]*(EnergyLevel[13] + 2.0*Emass));
139 G4ThreeVector moment = ptot * GetRandomVec();
140
141 AddNewParticle(theElectron,moment,Emass,&nPart,Cascade);
142
143 // Emit new photon or electron
144 // Simplified model for probabilities
145 // N.C.Mukhopadhyay Phy. Rep. 30 (1977) 1.
146 do {
147
148 // case of Auger electrons
149 if((nAuger < nElec) && ((pGamma + 10000.0) * G4UniformRand() < 10000.0) ) {
150 nAuger++;
151 DeltaE = EnergyLevel[nLevel-1] - EnergyLevel[nLevel];
152 nLevel--;
153
154 ptot = std::sqrt(DeltaE * (DeltaE + 2.0*Emass));
155 moment = ptot * GetRandomVec();
156
157 AddNewParticle(theElectron, moment, Emass, &nPart, Cascade);
158
159 } else {
160
161 // Case of photon cascade, probabilities from
162 // C.S.Wu and L.Wilets, Ann. Rev. Nuclear Sci. 19 (1969) 527.
163
164 G4double var = (10.0 + G4double(nLevel - 1) ) * G4UniformRand();
165 G4int iLevel = nLevel - 1 ;
166 if(var > 10.0) iLevel -= G4int(var-10.0) + 1;
167 if( iLevel < 0 ) iLevel = 0;
168 DeltaE = EnergyLevel[iLevel] - EnergyLevel[nLevel];
169 nLevel = iLevel;
170 moment = DeltaE * GetRandomVec();
171 AddNewParticle(theGamma, moment, 0.0, &nPart, Cascade);
172 }
173
174 } while( nLevel > 0 );
175
176 return nPart;
177}
int G4int
Definition: G4Types.hh:66

Referenced by G4MuonMinusCaptureAtRest::AtRestDoIt().

◆ GetKShellEnergy()

G4double G4MuMinusCaptureCascade::GetKShellEnergy ( G4double  Z)

Definition at line 70 of file G4MuMinusCaptureCascade.cc.

71{
72 // Calculate the Energy of K Mesoatom Level for this Element using
73 // the Energy of Hydrogen Atom taken into account finite size of the
74 // nucleus (V.Ivanchenko)
75 const G4int ListK = 28;
76 static G4double ListZK[ListK] = {
77 1., 2., 4., 6., 8., 11., 14., 17., 18., 21., 24.,
78 26., 29., 32., 38., 40., 41., 44., 49., 53., 55.,
79 60., 65., 70., 75., 81., 85., 92.};
80 static G4double ListKEnergy[ListK] = {
81 0.00275, 0.011, 0.043, 0.098, 0.173, 0.326,
82 0.524, 0.765, 0.853, 1.146, 1.472,
83 1.708, 2.081, 2.475, 3.323, 3.627,
84 3.779, 4.237, 5.016, 5.647, 5.966,
85 6.793, 7.602, 8.421, 9.249, 10.222,
86 10.923,11.984};
87
88 // Energy with finit size corrections
89 G4double KEnergy = GetLinApprox(ListK,ListZK,ListKEnergy,Z);
90
91 return KEnergy;
92}

Referenced by DoBoundMuonMinusDecay(), and DoCascade().

◆ GetRandomVec()

G4ThreeVector & G4MuMinusCaptureCascade::GetRandomVec ( )
inline

Definition at line 111 of file G4MuMinusCaptureCascade.hh.

112{
113 //
114 // generate uniform vector
115 //
116 G4double cost = 2.0 * G4UniformRand() - 1.0;
117 G4double sint = std::sqrt((1.0 - cost)*(1.0 + cost));
118 G4double Phi = CLHEP::twopi * G4UniformRand();
119 randomVect = G4ThreeVector(sint * std::cos(Phi), sint * std::sin(Phi), cost);
120 return randomVect;
121}
CLHEP::Hep3Vector G4ThreeVector

Referenced by DoBoundMuonMinusDecay(), and DoCascade().


The documentation for this class was generated from the following files: