Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
Gamma.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28//
29// ------------------------------------------------------------
30// GEANT 4 class implementation
31// ------------------------------------------------------------
32
33#include <cmath>
34#include <string.h>
35#include "Gamma.hh"
36
38
40
41//____________________________________________________________________________
42double MyGamma::Gamma(double z)
43{
44 // Computation of gamma(z) for all z>0.
45 //
46 // The algorithm is based on the article by C.Lanczos [1] as denoted in
47 // Numerical Recipes 2nd ed. on p. 207 (W.H.Press et al.).
48 //
49 // [1] C.Lanczos, SIAM Journal of Numerical Analysis B1 (1964), 86.
50 //
51 //--- Nve 14-nov-1998 UU-SAP Utrecht
52
53 if (z<=0) return 0;
54
55 double v = LnGamma(z);
56 return std::exp(v);
57}
58
59//____________________________________________________________________________
60double MyGamma::Gamma(double a,double x)
61{
62 // Computation of the incomplete gamma function P(a,x)
63 //
64 // The algorithm is based on the formulas and code as denoted in
65 // Numerical Recipes 2nd ed. on p. 210-212 (W.H.Press et al.).
66 //
67 //--- Nve 14-nov-1998 UU-SAP Utrecht
68
69 if (a <= 0 || x <= 0) return 0;
70
71 if (x < (a+1)) return GamSer(a,x);
72 else return GamCf(a,x);
73}
74
75//____________________________________________________________________________
76double MyGamma::GamCf(double a,double x)
77{
78 // Computation of the incomplete gamma function P(a,x)
79 // via its continued fraction representation.
80 //
81 // The algorithm is based on the formulas and code as denoted in
82 // Numerical Recipes 2nd ed. on p. 210-212 (W.H.Press et al.).
83 //
84 //--- Nve 14-nov-1998 UU-SAP Utrecht
85
86 int itmax = 100; // Maximum number of iterations
87 double eps = 3.e-7; // Relative accuracy
88 double fpmin = 1.e-30; // Smallest double value allowed here
89
90 if (a <= 0 || x <= 0) return 0;
91
92 double gln = LnGamma(a);
93 double b = x+1-a;
94 double c = 1/fpmin;
95 double d = 1/b;
96 double h = d;
97 double an,del;
98 for (int i=1; i<=itmax; i++) {
99 an = double(-i)*(double(i)-a);
100 b += 2;
101 d = an*d+b;
102 if (Abs(d) < fpmin) d = fpmin;
103 c = b+an/c;
104 if (Abs(c) < fpmin) c = fpmin;
105 d = 1/d;
106 del = d*c;
107 h = h*del;
108 if (Abs(del-1) < eps) break;
109 //if (i==itmax) cout << "*GamCf(a,x)* a too large or itmax too small" << endl;
110 }
111 double v = Exp(-x+a*Log(x)-gln)*h;
112 return (1-v);
113}
114
115//____________________________________________________________________________
116double MyGamma::GamSer(double a,double x)
117{
118 // Computation of the incomplete gamma function P(a,x)
119 // via its series representation.
120 //
121 // The algorithm is based on the formulas and code as denoted in
122 // Numerical Recipes 2nd ed. on p. 210-212 (W.H.Press et al.).
123 //
124 //--- Nve 14-nov-1998 UU-SAP Utrecht
125
126 int itmax = 100; // Maximum number of iterations
127 double eps = 3.e-7; // Relative accuracy
128
129 if (a <= 0 || x <= 0) return 0;
130
131 double gln = LnGamma(a);
132 double ap = a;
133 double sum = 1/a;
134 double del = sum;
135 for (int n=1; n<=itmax; n++) {
136 ap += 1;
137 del = del*x/ap;
138 sum += del;
139 if (MyGamma::Abs(del) < Abs(sum*eps)) break;
140 //if (n==itmax) cout << "*GamSer(a,x)* a too large or itmax too small" << endl;
141 }
142 double v = sum*Exp(-x+a*Log(x)-gln);
143 return v;
144}
145
146
147double MyGamma::LnGamma(double z)
148{
149 // Computation of ln[gamma(z)] for all z>0.
150 //
151 // The algorithm is based on the article by C.Lanczos [1] as denoted in
152 // Numerical Recipes 2nd ed. on p. 207 (W.H.Press et al.).
153 //
154 // [1] C.Lanczos, SIAM Journal of Numerical Analysis B1 (1964), 86.
155 //
156 // The accuracy of the result is better than 2e-10.
157 //
158 //--- Nve 14-nov-1998 UU-SAP Utrecht
159
160 if (z<=0) return 0;
161
162 // Coefficients for the series expansion
163 double c[7] = { 2.5066282746310005, 76.18009172947146, -86.50532032941677
164 ,24.01409824083091, -1.231739572450155, 0.1208650973866179e-2
165 ,-0.5395239384953e-5};
166
167 double x = z;
168 double y = x;
169 double tmp = x+5.5;
170 tmp = (x+0.5)*Log(tmp)-tmp;
171 double ser = 1.000000000190015;
172 for (int i=1; i<7; i++) {
173 y += 1;
174 ser += c[i]/y;
175 }
176 double v = tmp+Log(c[0]*ser/x);
177 return v;
178}
MyGamma()
Definition: Gamma.cc:37
~MyGamma()
Definition: Gamma.cc:39
double Gamma(double z)
Definition: Gamma.cc:42