Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4EMDissociationCrossSection Class Reference

#include <G4EMDissociationCrossSection.hh>

+ Inheritance diagram for G4EMDissociationCrossSection:

Public Member Functions

 G4EMDissociationCrossSection ()
 
 ~G4EMDissociationCrossSection ()
 
virtual G4bool IsElementApplicable (const G4DynamicParticle *, G4int Z, const G4Material *)
 
virtual G4double GetElementCrossSection (const G4DynamicParticle *, G4int Z, const G4Material *)
 
G4PhysicsFreeVectorGetCrossSectionForProjectile (G4double, G4double, G4double, G4double, G4double, G4double)
 
G4PhysicsFreeVectorGetCrossSectionForTarget (G4double, G4double, G4double, G4double, G4double, G4double)
 
G4double GetWilsonProbabilityForProtonDissociation (G4double, G4double)
 
- Public Member Functions inherited from G4VCrossSectionDataSet
 G4VCrossSectionDataSet (const G4String &nam="")
 
virtual ~G4VCrossSectionDataSet ()
 
virtual G4bool IsElementApplicable (const G4DynamicParticle *, G4int Z, const G4Material *mat=0)
 
virtual G4bool IsIsoApplicable (const G4DynamicParticle *, G4int Z, G4int A, const G4Element *elm=0, const G4Material *mat=0)
 
G4double GetCrossSection (const G4DynamicParticle *, const G4Element *, const G4Material *mat=0)
 
G4double ComputeCrossSection (const G4DynamicParticle *, const G4Element *, const G4Material *mat=0)
 
virtual G4double GetElementCrossSection (const G4DynamicParticle *, G4int Z, const G4Material *mat=0)
 
virtual G4double GetIsoCrossSection (const G4DynamicParticle *, G4int Z, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
 
virtual G4IsotopeSelectIsotope (const G4Element *, G4double kinEnergy)
 
virtual void BuildPhysicsTable (const G4ParticleDefinition &)
 
virtual void DumpPhysicsTable (const G4ParticleDefinition &)
 
virtual void CrossSectionDescription (std::ostream &) const
 
void SetVerboseLevel (G4int value)
 
G4double GetMinKinEnergy () const
 
void SetMinKinEnergy (G4double value)
 
G4double GetMaxKinEnergy () const
 
void SetMaxKinEnergy (G4double value)
 
const G4StringGetName () const
 

Additional Inherited Members

- Protected Member Functions inherited from G4VCrossSectionDataSet
void SetName (const G4String &)
 
- Protected Attributes inherited from G4VCrossSectionDataSet
G4int verboseLevel
 

Detailed Description

Definition at line 79 of file G4EMDissociationCrossSection.hh.

Constructor & Destructor Documentation

◆ G4EMDissociationCrossSection()

G4EMDissociationCrossSection::G4EMDissociationCrossSection ( )

Definition at line 79 of file G4EMDissociationCrossSection.cc.

80 : G4VCrossSectionDataSet("Electromagnetic dissociation")
81{
82 // This function makes use of the class which can sample the virtual photon
83 // spectrum, G4EMDissociationSpectrum.
84
85 thePhotonSpectrum = new G4EMDissociationSpectrum();
86
87 // Define other constants.
88
89 r0 = 1.18 * fermi;
90 J = 36.8 * MeV;
91 Qprime = 17.0 * MeV;
92 epsilon = 0.0768;
93 xd = 0.25;
94}

◆ ~G4EMDissociationCrossSection()

G4EMDissociationCrossSection::~G4EMDissociationCrossSection ( )

Definition at line 98 of file G4EMDissociationCrossSection.cc.

99{
100 delete thePhotonSpectrum;
101}

Member Function Documentation

◆ GetCrossSectionForProjectile()

G4PhysicsFreeVector * G4EMDissociationCrossSection::GetCrossSectionForProjectile ( G4double  AP,
G4double  ZP,
G4double  ,
G4double  ZT,
G4double  b,
G4double  bmin 
)

Definition at line 165 of file G4EMDissociationCrossSection.cc.

167{
168//
169//
170// Use Wilson et al's approach to calculate the cross-sections due to the E1
171// and E2 moments of the field at the giant dipole and quadrupole resonances
172// respectively, Note that the algorithm is traditionally applied to the
173// EMD break-up of the projectile in the field of the target, as is implemented
174// here.
175//
176// Initialise variables and calculate the energies for the GDR and GQR.
177//
178 G4double AProot3 = std::pow(AP,1.0/3.0);
179 G4double u = 3.0 * J / Qprime / AProot3;
180 G4double R0 = r0 * AProot3;
181 G4double E_GDR = hbarc / std::sqrt(0.7*amu_c2*R0*R0/8.0/J*
182 (1.0 + u - (1.0 + epsilon + 3.0*u)/(1.0 + epsilon + u)*epsilon));
183 G4double E_GQR = 63.0 * MeV / AProot3;
184//
185//
186// Determine the virtual photon spectra at these energies.
187//
188 G4double ZTsq = ZT * ZT;
189 G4double nE1 = ZTsq *
190 thePhotonSpectrum->GetGeneralE1Spectrum(E_GDR, b, bmin);
191 G4double nE2 = ZTsq *
192 thePhotonSpectrum->GetGeneralE2Spectrum(E_GQR, b, bmin);
193//
194//
195// Now calculate the cross-section of the projectile for interaction with the
196// E1 and E2 fields.
197//
198 G4double sE1 = 60.0 * millibarn * MeV * (AP-ZP)*ZP/AP;
199 G4double sE2 = 0.22 * microbarn / MeV * ZP * AProot3 * AProot3;
200 if (AP > 100.0) sE2 *= 0.9;
201 else if (AP > 40.0) sE2 *= 0.6;
202 else sE2 *= 0.3;
203//
204//
205// ... and multiply with the intensity of the virtual photon spectra to get
206// the probability of interaction.
207//
208 G4PhysicsFreeVector *theCrossSectionVector = new G4PhysicsFreeVector(2);
209 theCrossSectionVector->PutValue(0, E_GDR, sE1*nE1);
210 theCrossSectionVector->PutValue(1, E_GQR, sE2*nE2*E_GQR*E_GQR);
211
212 return theCrossSectionVector;
213}
double G4double
Definition: G4Types.hh:64
G4double GetGeneralE1Spectrum(G4double, G4double, G4double)
G4double GetGeneralE2Spectrum(G4double, G4double, G4double)
void PutValue(size_t binNumber, G4double binValue, G4double dataValue)

Referenced by GetCrossSectionForTarget(), and GetElementCrossSection().

◆ GetCrossSectionForTarget()

G4PhysicsFreeVector * G4EMDissociationCrossSection::GetCrossSectionForTarget ( G4double  AP,
G4double  ZP,
G4double  AT,
G4double  ZT,
G4double  b,
G4double  bmin 
)

Definition at line 218 of file G4EMDissociationCrossSection.cc.

220{
221//
222// This is a cheaky little member function to calculate the probability of
223// EMD for the target in the field of the projectile ... just by reversing the
224// A and Z's for the participants.
225//
226 return GetCrossSectionForProjectile (AT, ZT, AP, ZP, b, bmin);
227}
G4PhysicsFreeVector * GetCrossSectionForProjectile(G4double, G4double, G4double, G4double, G4double, G4double)

Referenced by GetElementCrossSection().

◆ GetElementCrossSection()

G4double G4EMDissociationCrossSection::GetElementCrossSection ( const G4DynamicParticle theDynamicParticle,
G4int  Z,
const G4Material  
)
virtual

Reimplemented from G4VCrossSectionDataSet.

Definition at line 124 of file G4EMDissociationCrossSection.cc.

127{
128 // VI protection for Hydrogen
129 if(1 >= Z) { return 0.0; }
130
131 //
132 // Get relevant information about the projectile and target (A, Z) and
133 // velocity of the projectile.
134 //
135 G4ParticleDefinition *definitionP = theDynamicParticle->GetDefinition();
136 G4double AP = definitionP->GetBaryonNumber();
137 G4double ZP = definitionP->GetPDGCharge();
138 G4double b = theDynamicParticle->Get4Momentum().beta();
139
141 G4double ZT = (G4double)Z;
142 G4double bmin = thePhotonSpectrum->GetClosestApproach(AP, ZP, AT, ZT, b);
143 //
144 //
145 // Calculate the cross-section for the projectile and then the target. The
146 // information is returned in a G4PhysicsFreeVector, which separates out the
147 // cross-sections for the E1 and E2 moments of the virtual photon field, and
148 // the energies (GDR and GQR).
149 //
150 G4PhysicsFreeVector *theProjectileCrossSections =
151 GetCrossSectionForProjectile (AP, ZP, AT, ZT, b, bmin);
152 G4double crossSection =
153 (*theProjectileCrossSections)[0]+(*theProjectileCrossSections)[1];
154 delete theProjectileCrossSections;
155 G4PhysicsFreeVector *theTargetCrossSections =
156 GetCrossSectionForTarget (AP, ZP, AT, ZT, b, bmin);
157 crossSection +=
158 (*theTargetCrossSections)[0]+(*theTargetCrossSections)[1];
159 delete theTargetCrossSections;
160 return crossSection;
161}
G4ParticleDefinition * GetDefinition() const
G4LorentzVector Get4Momentum() const
G4PhysicsFreeVector * GetCrossSectionForTarget(G4double, G4double, G4double, G4double, G4double, G4double)
G4double GetClosestApproach(const G4double, const G4double, G4double, G4double, G4double)
static G4NistManager * Instance()
G4double GetAtomicMassAmu(const G4String &symb) const
G4double GetPDGCharge() const

◆ GetWilsonProbabilityForProtonDissociation()

G4double G4EMDissociationCrossSection::GetWilsonProbabilityForProtonDissociation ( G4double  A,
G4double  Z 
)

Definition at line 232 of file G4EMDissociationCrossSection.cc.

234{
235//
236// This is a simple algorithm to choose whether a proton or neutron is ejected
237// from the nucleus in the EMD interaction.
238//
239 G4double p = 0.0;
240 if (Z < 6.0)
241 p = 0.5;
242 else if (Z < 8.0)
243 p = 0.6;
244 else if (Z < 14.0)
245 p = 0.7;
246 else
247 {
248 G4double p1 = (G4double) Z / (G4double) A;
249 G4double p2 = 1.95*std::exp(-0.075*Z);
250 if (p1 < p2) p = p1;
251 else p = p2;
252 }
253
254 return p;
255}

◆ IsElementApplicable()

G4bool G4EMDissociationCrossSection::IsElementApplicable ( const G4DynamicParticle part,
G4int  Z,
const G4Material  
)
virtual

Reimplemented from G4VCrossSectionDataSet.

Definition at line 105 of file G4EMDissociationCrossSection.cc.

107{
108//
109// The condition for the applicability of this class is that the projectile
110// must be an ion and the target must have more than one nucleon. In reality
111// the value of A for either the projectile or target could be much higher,
112// since for cases where both he projectile and target are medium to small
113// Z, the probability of the EMD process is, I think, VERY small.
114//
115 if (G4ParticleTable::GetParticleTable()->GetIonTable()->IsIon(part->GetDefinition())) {
116 return true;
117 } else {
118 return false;
119 }
120}
static G4ParticleTable * GetParticleTable()

The documentation for this class was generated from the following files: