Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4QAntiBaryonElasticCrossSection.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29//
30// G4 Physics class: G4QAntiBaryonElasticCrossSection for pA elastic cross sections
31// Created: M.V. Kossov, CERN/ITEP(Moscow), 5-Feb-2010
32// The last update: M.V. Kossov, CERN/ITEP (Moscow) 5-Feb-2010
33//
34// -------------------------------------------------------------------------------
35// Short description: Interaction cross-sections for the G4QElastic process
36// -------------------------------------------------------------------------------
37
38//#define debug
39//#define isodebug
40//#define pdebug
41//#define ppdebug
42//#define tdebug
43//#define sdebug
44
46#include "G4SystemOfUnits.hh"
47
48// Initialization of the static parameters
49const G4int G4QAntiBaryonElasticCrossSection::nPoints=128;//#ofPt in AMDB table(>anyPar)(D)
50const G4int G4QAntiBaryonElasticCrossSection::nLast=nPoints-1;// theLastElement inTable (D)
51G4double G4QAntiBaryonElasticCrossSection::lPMin=-8.; //Min tabulatedLogarithmMomentum(D)
52G4double G4QAntiBaryonElasticCrossSection::lPMax= 8.; //Max tabulatedLogarithmMomentum(D)
53G4double G4QAntiBaryonElasticCrossSection::dlnP=(lPMax-lPMin)/nLast;// LogStep inTable (D)
54G4bool G4QAntiBaryonElasticCrossSection::onlyCS=true;//Flag toCalculOnlyCS(not Si/Bi)(L)
55G4double G4QAntiBaryonElasticCrossSection::lastSIG=0.; //Last calculated cross section (L)
56G4double G4QAntiBaryonElasticCrossSection::lastLP=-10.;//LastLog(mom_of IncidentHadron)(L)
57G4double G4QAntiBaryonElasticCrossSection::lastTM=0.; //Last t_maximum (L)
58G4double G4QAntiBaryonElasticCrossSection::theSS=0.; //TheLastSqSlope of 1st difr.Max(L)
59G4double G4QAntiBaryonElasticCrossSection::theS1=0.; //TheLastMantissa of 1st difrMax(L)
60G4double G4QAntiBaryonElasticCrossSection::theB1=0.; //TheLastSlope of 1st difructMax(L)
61G4double G4QAntiBaryonElasticCrossSection::theS2=0.; //TheLastMantissa of 2nd difrMax(L)
62G4double G4QAntiBaryonElasticCrossSection::theB2=0.; //TheLastSlope of 2nd difructMax(L)
63G4double G4QAntiBaryonElasticCrossSection::theS3=0.; //TheLastMantissa of 3d difr.Max(L)
64G4double G4QAntiBaryonElasticCrossSection::theB3=0.; //TheLastSlope of 3d difruct.Max(L)
65G4double G4QAntiBaryonElasticCrossSection::theS4=0.; //TheLastMantissa of 4th difrMax(L)
66G4double G4QAntiBaryonElasticCrossSection::theB4=0.; //TheLastSlope of 4th difructMax(L)
67G4int G4QAntiBaryonElasticCrossSection::lastTZ=0; // Last atomic number of the target
68G4int G4QAntiBaryonElasticCrossSection::lastTN=0; // Last # of neutrons in the target
69G4double G4QAntiBaryonElasticCrossSection::lastPIN=0.; // Last initialized max momentum
70G4double* G4QAntiBaryonElasticCrossSection::lastCST=0; // Elastic cross-section table
71G4double* G4QAntiBaryonElasticCrossSection::lastPAR=0; // ParametersForFunctionCalculation
72G4double* G4QAntiBaryonElasticCrossSection::lastSST=0; // E-dep ofSqardSlope of 1st difMax
73G4double* G4QAntiBaryonElasticCrossSection::lastS1T=0; // E-dep of mantissa of 1st dif.Max
74G4double* G4QAntiBaryonElasticCrossSection::lastB1T=0; // E-dep of the slope of 1st difMax
75G4double* G4QAntiBaryonElasticCrossSection::lastS2T=0; // E-dep of mantissa of 2nd difrMax
76G4double* G4QAntiBaryonElasticCrossSection::lastB2T=0; // E-dep of the slope of 2nd difMax
77G4double* G4QAntiBaryonElasticCrossSection::lastS3T=0; // E-dep of mantissa of 3d difr.Max
78G4double* G4QAntiBaryonElasticCrossSection::lastB3T=0; // E-dep of the slope of 3d difrMax
79G4double* G4QAntiBaryonElasticCrossSection::lastS4T=0; // E-dep of mantissa of 4th difrMax
80G4double* G4QAntiBaryonElasticCrossSection::lastB4T=0; // E-dep of the slope of 4th difMax
81G4int G4QAntiBaryonElasticCrossSection::lastN=0; // The last N of calculated nucleus
82G4int G4QAntiBaryonElasticCrossSection::lastZ=0; // The last Z of calculated nucleus
83G4double G4QAntiBaryonElasticCrossSection::lastP=0.; // LastUsed inCrossSection Momentum
84G4double G4QAntiBaryonElasticCrossSection::lastTH=0.; // Last threshold momentum
85G4double G4QAntiBaryonElasticCrossSection::lastCS=0.; // Last value of the Cross Section
86G4int G4QAntiBaryonElasticCrossSection::lastI=0; // The last position in the DAMDB
87
88std::vector<G4double*> G4QAntiBaryonElasticCrossSection::PAR;// Vector ofParsForFunctCalcul
89std::vector<G4double*> G4QAntiBaryonElasticCrossSection::CST;// Vector ofCrossSection table
90std::vector<G4double*> G4QAntiBaryonElasticCrossSection::SST;// Vector ofThe1st SquardSlope
91std::vector<G4double*> G4QAntiBaryonElasticCrossSection::S1T;// Vector of the 1st mantissa
92std::vector<G4double*> G4QAntiBaryonElasticCrossSection::B1T;// Vector of the1st slope
93std::vector<G4double*> G4QAntiBaryonElasticCrossSection::S2T;// Vector of the2nd mantissa
94std::vector<G4double*> G4QAntiBaryonElasticCrossSection::B2T;// Vector of the2nd slope
95std::vector<G4double*> G4QAntiBaryonElasticCrossSection::S3T;// Vector of the3d mantissa
96std::vector<G4double*> G4QAntiBaryonElasticCrossSection::B3T;// Vector of the3d slope
97std::vector<G4double*> G4QAntiBaryonElasticCrossSection::S4T;// Vector ofThe4th mantissa(g)
98std::vector<G4double*> G4QAntiBaryonElasticCrossSection::B4T;// Vector ofThe4th slope(glor)
99
101{
102}
103
105{
106 std::vector<G4double*>::iterator pos;
107 for (pos=CST.begin(); pos<CST.end(); pos++)
108 { delete [] *pos; }
109 CST.clear();
110 for (pos=PAR.begin(); pos<PAR.end(); pos++)
111 { delete [] *pos; }
112 PAR.clear();
113 for (pos=SST.begin(); pos<SST.end(); pos++)
114 { delete [] *pos; }
115 SST.clear();
116 for (pos=S1T.begin(); pos<S1T.end(); pos++)
117 { delete [] *pos; }
118 S1T.clear();
119 for (pos=B1T.begin(); pos<B1T.end(); pos++)
120 { delete [] *pos; }
121 B1T.clear();
122 for (pos=S2T.begin(); pos<S2T.end(); pos++)
123 { delete [] *pos; }
124 S2T.clear();
125 for (pos=B2T.begin(); pos<B2T.end(); pos++)
126 { delete [] *pos; }
127 B2T.clear();
128 for (pos=S3T.begin(); pos<S3T.end(); pos++)
129 { delete [] *pos; }
130 S3T.clear();
131 for (pos=B3T.begin(); pos<B3T.end(); pos++)
132 { delete [] *pos; }
133 B3T.clear();
134 for (pos=S4T.begin(); pos<S4T.end(); pos++)
135 { delete [] *pos; }
136 S4T.clear();
137 for (pos=B4T.begin(); pos<B4T.end(); pos++)
138 { delete [] *pos; }
139 B4T.clear();
140}
141
142// Returns Pointer to the G4VQCrossSection class
144{
145 static G4QAntiBaryonElasticCrossSection theCrossSection;//StaticBody ofTheQElCrossSection
146 return &theCrossSection;
147}
148
149// The main member function giving the collision cross section (P is in IU, CS is in mb)
150// Make pMom in independent units ! (Now it is MeV)
152 G4int tgZ, G4int tgN, G4int pPDG)
153{
154 static std::vector <G4int> colN; // Vector of N for calculated nuclei (isotops)
155 static std::vector <G4int> colZ; // Vector of Z for calculated nuclei (isotops)
156 static std::vector <G4double> colP; // Vector of last momenta for the reaction
157 static std::vector <G4double> colTH; // Vector of energy thresholds for the reaction
158 static std::vector <G4double> colCS; // Vector of last cross sections for the reaction
159 // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
160 G4double pEn=pMom;
161 onlyCS=fCS;
162#ifdef pdebug
163 G4cout<<"G4QaBaElCS::GetCS:>>> f="<<fCS<<", p="<<pMom<<", Z="<<tgZ<<"("<<lastZ<<") ,N="
164 <<tgN<<"("<<lastN<<"), T="<<pEn<<"("<<lastTH<<")"<<",Sz="<<colN.size()<<G4endl;
165 //CalculateCrossSection(fCS,-27,j,pPDG,lastZ,lastN,pMom); // DUMMY TEST
166#endif
167 if(pPDG<-3334 || pPDG>-1111)
168 {
169 G4cout<<"*Warning*G4QAntiBaryElCS::GetCS:**> Found pPDG="<<pPDG<<" =--=> CS=0"<<G4endl;
170 //CalculateCrossSection(fCS,-27,j,pPDG,lastZ,lastN,pMom); // DUMMY TEST
171 return 0.; // projectile PDG=0 is a mistake (?!) @@
172 }
173 G4bool in=false; // By default the isotope must be found in the AMDB
174 lastP = 0.; // New momentum history (nothing to compare with)
175 lastN = tgN; // The last N of the calculated nucleus
176 lastZ = tgZ; // The last Z of the calculated nucleus
177 lastI = colN.size(); // Size of the Associative Memory DB in the heap
178 if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB
179 { // The nucleus with projPDG is found in AMDB
180 if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
181 {
182 lastI=i;
183 lastTH =colTH[i]; // Last THreshold (A-dependent)
184#ifdef pdebug
185 G4cout<<"G4QaBElCS::GetCS:*Found* P="<<pMom<<",Threshold="<<lastTH<<",i="<<i<<G4endl;
186 //CalculateCrossSection(fCS,-27,i,pPDG,lastZ,lastN,pMom); // DUMMY TEST
187#endif
188 if(pEn<=lastTH)
189 {
190#ifdef pdebug
191 G4cout<<"G4QaBElCS::GetCS:Found T="<<pEn<<" < Threshold="<<lastTH<<",CS=0"<<G4endl;
192 //CalculateCrossSection(fCS,-27,i,pPDG,lastZ,lastN,pMom); // DUMMY TEST
193#endif
194 return 0.; // Energy is below the Threshold value
195 }
196 lastP =colP [i]; // Last Momentum (A-dependent)
197 lastCS =colCS[i]; // Last CrossSect (A-dependent)
198 // if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
199 if(lastP == pMom) // Do not recalculate
200 {
201#ifdef pdebug
202 G4cout<<"G4QAntiBaryonElasticCS::GetCS:P="<<pMom<<",CS="<<lastCS*millibarn<<G4endl;
203#endif
204 CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // Update param's only
205 return lastCS*millibarn; // Use theLastCS
206 }
207 in = true; // This is the case when the isotop is found in DB
208 // Momentum pMom is in IU ! @@ Units
209#ifdef pdebug
210 G4cout<<"G4QaBElCS::G:UpdateDB P="<<pMom<<",f="<<fCS<<",I="<<lastI<<",i="<<i<<G4endl;
211#endif
212 lastCS=CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // read & update
213#ifdef pdebug
214 G4cout<<"G4QAntiBElCS::GetCrosSec: *****> New (inDB) Calculated CS="<<lastCS<<G4endl;
215 //CalculateCrossSection(fCS,-27,i,pPDG,lastZ,lastN,pMom); // DUMMY TEST
216#endif
217 if(lastCS<=0. && pEn>lastTH) // Correct the threshold
218 {
219#ifdef pdebug
220 G4cout<<"G4QAntiBarElCS::GetCS: NewT="<<pEn<<"(CS=0) > Threshold="<<lastTH<<G4endl;
221#endif
222 lastTH=pEn;
223 }
224 break; // Go out of the LOOP with found lastI
225 }
226#ifdef pdebug
227 G4cout<<"---G4QAntiBarElCrossSection::GetCrosSec:pPDG="<<pPDG<<",i="<<i<<",N="<<colN[i]
228 <<",Z["<<i<<"]="<<colZ[i]<<G4endl;
229 //CalculateCrossSection(fCS,-27,i,pPDG,lastZ,lastN,pMom); // DUMMY TEST
230#endif
231 } // End of attampt to find the nucleus in DB
232 if(!in) // This nucleus has not been calculated previously
233 {
234#ifdef pdebug
235 G4cout<<"G4QaBElCS::GetCrosSec:CalcNew P="<<pMom<<",f="<<fCS<<",lastI="<<lastI<<G4endl;
236#endif
237 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
238 lastCS=CalculateCrossSection(fCS,0,lastI,pPDG,lastZ,lastN,pMom);//calculate&create
239 if(lastCS<=0.)
240 {
241 lastTH = ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
242#ifdef pdebug
243 G4cout<<"G4QaBaElCrossSection::GetCrossSect: NewThresh="<<lastTH<<",T="<<pEn<<G4endl;
244#endif
245 if(pEn>lastTH)
246 {
247#ifdef pdebug
248 G4cout<<"G4QaBarElCS::GetCS: First T="<<pEn<<"(CS=0) > Threshold="<<lastTH<<G4endl;
249#endif
250 lastTH=pEn;
251 }
252 }
253#ifdef pdebug
254 G4cout<<"G4QaBElCS::GetCrosSec: New CS="<<lastCS<<",lZ="<<lastN<<",lN="<<lastZ<<G4endl;
255 //CalculateCrossSection(fCS,-27,lastI,pPDG,lastZ,lastN,pMom); // DUMMY TEST
256#endif
257 colN.push_back(tgN);
258 colZ.push_back(tgZ);
259 colP.push_back(pMom);
260 colTH.push_back(lastTH);
261 colCS.push_back(lastCS);
262#ifdef pdebug
263 G4cout<<"G4QaBElCS::GetCS:1st,P="<<pMom<<"(MeV),CS="<<lastCS*millibarn<<"(mb)"<<G4endl;
264 //CalculateCrossSection(fCS,-27,lastI,pPDG,lastZ,lastN,pMom); // DUMMY TEST
265#endif
266 return lastCS*millibarn;
267 } // End of creation of the new set of parameters
268 else
269 {
270#ifdef pdebug
271 G4cout<<"G4QAntiBaryonElasticCrossSection::GetCS: Update lastI="<<lastI<<G4endl;
272#endif
273 colP[lastI]=pMom;
274 colCS[lastI]=lastCS;
275 }
276#ifdef pdebug
277 G4cout<<"G4QaBElCS::GetCSec:End,P="<<pMom<<"(MeV),CS="<<lastCS*millibarn<<"(mb)"<<G4endl;
278 //CalculateCrossSection(fCS,-27,lastI,pPDG,lastZ,lastN,pMom); // DUMMY TEST
279 G4cout<<"G4QAntiBaryonElasticCrossSection::GetCrosSec:***End***,onlyCS="<<onlyCS<<G4endl;
280#endif
281 return lastCS*millibarn;
282}
283
284// Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
285// F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
287 G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
288{
289 // *** Begin of Associative Memory DB for acceleration of the cross section calculations
290 static std::vector <G4double> PIN; // Vector of max initialized log(P) in the table
291 // *** End of Static Definitions (Associative Memory Data Base) ***
292 G4double pMom=pIU/GeV; // All calculations are in GeV
293 onlyCS=CS; // Flag to calculate only CS (not Si/Bi)
294#ifdef pdebug
295 G4cout<<"G4QAntiBaryonElasticCS::CalcCS:->onlyCS="<<onlyCS<<",F="<<F<<",p="<<pIU<<G4endl;
296#endif
297 lastLP=std::log(pMom); // Make a logarithm of the momentum for calculation
298 if(F) // This isotope was found in AMDB =>RETRIEVE/UPDATE
299 {
300 if(F<0) // the AMDB must be loded
301 {
302 lastPIN = PIN[I]; // Max log(P) initialised for this table set
303 lastPAR = PAR[I]; // Pointer to the parameter set
304 lastCST = CST[I]; // Pointer to the total sross-section table
305 lastSST = SST[I]; // Pointer to the first squared slope
306 lastS1T = S1T[I]; // Pointer to the first mantissa
307 lastB1T = B1T[I]; // Pointer to the first slope
308 lastS2T = S2T[I]; // Pointer to the second mantissa
309 lastB2T = B2T[I]; // Pointer to the second slope
310 lastS3T = S3T[I]; // Pointer to the third mantissa
311 lastB3T = B3T[I]; // Pointer to the rhird slope
312 lastS4T = S4T[I]; // Pointer to the 4-th mantissa
313 lastB4T = B4T[I]; // Pointer to the 4-th slope
314#ifdef pdebug
315 G4cout<<"G4QAntiBarElCS::CalcCS: DB's updated for I="<<I<<",*,PIN4="<<PIN[4]<<G4endl;
316#endif
317 }
318#ifdef pdebug
319 G4cout<<"G4QAntiBaryonElasticCS::CalcCS:*read*, LP="<<lastLP<<",PIN="<<lastPIN<<G4endl;
320#endif
321 if(lastLP>lastPIN && lastLP<lPMax)
322 {
323 lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
324#ifdef pdebug
325 G4cout<<"G4QaBElCS::CalcCS:updated(I),LP="<<lastLP<<"<IN["<<I<<"]="<<lastPIN<<G4endl;
326#endif
327 PIN[I]=lastPIN; // Remember the new P-Limit of the tables
328 }
329 }
330 else // This isotope wasn't initialized => CREATE
331 {
332 lastPAR = new G4double[nPoints]; // Allocate memory for parameters of CS function
333 lastPAR[nLast]=0; // Initialization for VALGRIND
334 lastCST = new G4double[nPoints]; // Allocate memory for Tabulated CS function
335 lastSST = new G4double[nPoints]; // Allocate memory for Tabulated first sqaredSlope
336 lastS1T = new G4double[nPoints]; // Allocate memory for Tabulated first mantissa
337 lastB1T = new G4double[nPoints]; // Allocate memory for Tabulated first slope
338 lastS2T = new G4double[nPoints]; // Allocate memory for Tabulated second mantissa
339 lastB2T = new G4double[nPoints]; // Allocate memory for Tabulated second slope
340 lastS3T = new G4double[nPoints]; // Allocate memory for Tabulated third mantissa
341 lastB3T = new G4double[nPoints]; // Allocate memory for Tabulated third slope
342 lastS4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th mantissa
343 lastB4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th slope
344#ifdef pdebug
345 G4cout<<"G4QAntiBaryonElasticCS::CalcCS:*ini*,lastLP="<<lastLP<<",min="<<lPMin<<G4endl;
346#endif
347 lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
348#ifdef pdebug
349 G4cout<<"G4QAnBaElCS::CCS:i,Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<",LP"<<lastPIN<<G4endl;
350#endif
351 PIN.push_back(lastPIN); // Fill parameters of CS function to AMDB
352 PAR.push_back(lastPAR); // Fill parameters of CS function to AMDB
353 CST.push_back(lastCST); // Fill Tabulated CS function to AMDB
354 SST.push_back(lastSST); // Fill Tabulated first sq.slope to AMDB
355 S1T.push_back(lastS1T); // Fill Tabulated first mantissa to AMDB
356 B1T.push_back(lastB1T); // Fill Tabulated first slope to AMDB
357 S2T.push_back(lastS2T); // Fill Tabulated second mantissa to AMDB
358 B2T.push_back(lastB2T); // Fill Tabulated second slope to AMDB
359 S3T.push_back(lastS3T); // Fill Tabulated third mantissa to AMDB
360 B3T.push_back(lastB3T); // Fill Tabulated third slope to AMDB
361 S4T.push_back(lastS4T); // Fill Tabulated 4-th mantissa to AMDB
362 B4T.push_back(lastB4T); // Fill Tabulated 4-th slope to AMDB
363 } // End of creation/update of the new set of parameters and tables
364 // =---------= NOW Update (if necessary) and Calculate the Cross Section =-----------=
365#ifdef pdebug
366 G4cout<<"G4QaBElCS::CalcCS:?update?,LP="<<lastLP<<",IN="<<lastPIN<<",ML="<<lPMax<<G4endl;
367#endif
368 if(lastLP>lastPIN && lastLP<lPMax)
369 {
370 lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
371#ifdef pdebug
372 G4cout<<"G4QAntiBarElCS::CalcCS: *updated(O)*, LP="<<lastLP<<" < IN="<<lastPIN<<G4endl;
373#endif
374 }
375#ifdef pdebug
376 G4cout<<"G4QaBaElCS::CalcCS: lastLP="<<lastLP<<",lPM="<<lPMin<<",lPIN="<<lastPIN<<G4endl;
377#endif
378 if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
379#ifdef pdebug
380 G4cout<<"G4QAnBarElCrosSec::CalcCS:oCS="<<onlyCS<<",-t="<<lastTM<<", p="<<lastLP<<G4endl;
381#endif
382 if(lastLP>lPMin && lastLP<=lastPIN) // Linear fit is made using precalculated tables
383 {
384 if(lastLP==lastPIN)
385 {
386 G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
387 G4int blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
388 if(blast<0 || blast>=nLast) G4cout<<"G4QaBarElCS::CCS:b="<<blast<<","<<nLast<<G4endl;
389 lastSIG = lastCST[blast];
390 if(!onlyCS) // Skip the differential cross-section parameters
391 {
392 theSS = lastSST[blast];
393 theS1 = lastS1T[blast];
394 theB1 = lastB1T[blast];
395 theS2 = lastS2T[blast];
396 theB2 = lastB2T[blast];
397 theS3 = lastS3T[blast];
398 theB3 = lastB3T[blast];
399 theS4 = lastS4T[blast];
400 theB4 = lastB4T[blast];
401 }
402#ifdef pdebug
403 G4cout<<"G4QAntiBaryonElasticCS::CalculateCS:(E) S1="<<theS1<<", B1="<<theB1<<G4endl;
404#endif
405 }
406 else
407 {
408 G4double shift=(lastLP-lPMin)/dlnP; // a shift from the beginning of the table
409 G4int blast=static_cast<int>(shift); // the lower bin number
410 if(blast<0) blast=0;
411 if(blast>=nLast) blast=nLast-1; // low edge of the last bin
412 shift-=blast; // step inside the unit bin
413 G4int lastL=blast+1; // the upper bin number
414 G4double SIGL=lastCST[blast]; // the basic value of the cross-section
415 lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
416#ifdef pdebug
417 G4cout<<"G4QAntiBaryonElasticCrossSection::CalcCrossSection:Sig="<<lastSIG<<",P="
418 <<pMom<<",Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<",onlyCS="<<onlyCS<<G4endl;
419#endif
420 if(!onlyCS) // Skip the differential cross-section parameters
421 {
422 G4double SSTL=lastSST[blast]; // the low bin of the first squared slope
423 theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
424 G4double S1TL=lastS1T[blast]; // the low bin of the first mantissa
425 theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
426 G4double B1TL=lastB1T[blast]; // the low bin of the first slope
427#ifdef pdebug
428 G4cout<<"G4QAntiBaryonElasticCS::CalcCrossSection:b="<<blast<<",ls="<<lastL<<",SL="
429 <<S1TL<<",SU="<<lastS1T[lastL]<<",BL="<<B1TL<<",BU="<<lastB1T[lastL]<<G4endl;
430#endif
431 theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
432 G4double S2TL=lastS2T[blast]; // the low bin of the second mantissa
433 theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
434 G4double B2TL=lastB2T[blast]; // the low bin of the second slope
435 theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
436 G4double S3TL=lastS3T[blast]; // the low bin of the third mantissa
437 theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
438#ifdef pdebug
439 G4cout<<"G4QAntiBaryonElasticCrossSection::CCS:s3l="<<S3TL<<",sh3="<<shift<<",s3h="
440 <<lastS3T[lastL]<<",b="<<blast<<",l="<<lastL<<G4endl;
441#endif
442 G4double B3TL=lastB3T[blast]; // the low bin of the third slope
443 theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
444 G4double S4TL=lastS4T[blast]; // the low bin of the 4-th mantissa
445 theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
446#ifdef pdebug
447 G4cout<<"G4QAntiBaryonElasticCrossSection::CCS:s4l="<<S4TL<<",sh4="<<shift<<",s4h="
448 <<lastS4T[lastL]<<",b="<<blast<<",l="<<lastL<<G4endl;
449#endif
450 G4double B4TL=lastB4T[blast]; // the low bin of the 4-th slope
451 theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
452 }
453#ifdef pdebug
454 G4cout<<"G4QAntiBaryonElasticCS::CalculateCS:(I) S1="<<theS1<<", B1="<<theB1<<G4endl;
455#endif
456 }
457 }
458 else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
459 if(lastSIG<0.) lastSIG = 0.; // @@ a Warning print can be added
460#ifdef pdebug
461 G4cout<<"G4QAntiBaryonElasticCrossSection::CalculateCS: END, onlyCS="<<onlyCS<<G4endl;
462#endif
463 return lastSIG;
464}
465
466// It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
467G4double G4QAntiBaryonElasticCrossSection::GetPTables(G4double LP, G4double ILP, G4int PDG,
468 G4int tgZ, G4int tgN)
469{
470 // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
471 static const G4double pwd=2727;
472 const G4int n_appel=30; // #of parameters for app-elastic (<nPoints=128)
473 // -0- -1- -2- -3- -4- -5- -6- -7- -8--9--10--11--12--13--14-
474 G4double app_el[n_appel]={1.25,3.5,80.,1.,.0557,6.72,5.,74.,3.,3.4,.2,.17,.001,8.,.055,
475 3.64,5.e-5,4000.,1500.,.46,1.2e6,3.5e6,5.e-5,1.e10,8.5e8,
476 1.e10,1.1,3.4e6,6.8e6,0.};
477 // -15- -16- -17- -18- -19- -20- -21- -22- -23- -24-
478 // -25- -26- -27- -28- -29-
479 if(PDG>-3334 && PDG<-1111)
480 {
481 // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
482 //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
483 //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
484 // par(0) par(7) par(1) par(2) par(4) par(5) par(6)
485 //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
486 // par(8) par(9) par(10) par(11) par(12)par(13) par(14)
487 // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
488 // par(15) par(16) par(17) par(18) par(19) par(20) par(21) par(22) par(23)
489 // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
490 // par(24) par(25) par(26) par(27) par(28) par(29) par(30) par(31)
491 //
492 if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
493 {
494 if ( tgZ == 1 && tgN == 0 )
495 {
496 for (G4int ip=0; ip<n_appel; ip++) lastPAR[ip]=app_el[ip]; // PiMinus+P
497 }
498 else
499 {
500 G4double a=tgZ+tgN;
501 G4double sa=std::sqrt(a);
502 G4double ssa=std::sqrt(sa);
503 G4double asa=a*sa;
504 G4double a2=a*a;
505 G4double a3=a2*a;
506 G4double a4=a3*a;
507 G4double a5=a4*a;
508 G4double a6=a4*a2;
509 G4double a7=a6*a;
510 G4double a8=a7*a;
511 G4double a9=a8*a;
512 G4double a10=a5*a5;
513 G4double a12=a6*a6;
514 G4double a14=a7*a7;
515 G4double a16=a8*a8;
516 G4double a17=a16*a;
517 //G4double a20=a16*a4;
518 G4double a32=a16*a16;
519 // Reaction cross-section parameters (pel=peh_fit.f)
520 lastPAR[0]=.23*asa/(1.+a*.15); // p1
521 lastPAR[1]=2.8*asa/(1.+a*(.015+.05/ssa)); // p2
522 lastPAR[2]=15.*a/(1.+.005*a2); // p3
523 lastPAR[3]=.013*a2/(1.+a3*(.006+a*.00001)); // p4
524 lastPAR[4]=5.; // p5
525 lastPAR[5]=0.; // p6 not used
526 lastPAR[6]=0.; // p7 not used
527 lastPAR[7]=0.; // p8 not used
528 lastPAR[8]=0.; // p9 not used
529 // @@ the differential cross-section is parameterized separately for A>6 & A<7
530 if(a<6.5)
531 {
532 G4double a28=a16*a12;
533 // The main pre-exponent (pel_sg)
534 lastPAR[ 9]=4000*a; // p1
535 lastPAR[10]=1.2e7*a8+380*a17; // p2
536 lastPAR[11]=.7/(1.+4.e-12*a16); // p3
537 lastPAR[12]=2.5/a8/(a4+1.e-16*a32); // p4
538 lastPAR[13]=.28*a; // p5
539 lastPAR[14]=1.2*a2+2.3; // p6
540 lastPAR[15]=3.8/a; // p7
541 // The main slope (pel_sl)
542 lastPAR[16]=.01/(1.+.0024*a5); // p1
543 lastPAR[17]=.2*a; // p2
544 lastPAR[18]=9.e-7/(1.+.035*a5); // p3
545 lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a); // p4
546 // The main quadratic (pel_sh)
547 lastPAR[20]=2.25*a3; // p1
548 lastPAR[21]=18.; // p2
549 lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7); // p3
550 lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a); // p4
551 // The 1st max pre-exponent (pel_qq)
552 lastPAR[24]=1.e5/(a8+2.5e12/a16); // p1
553 lastPAR[25]=8.e7/(a12+1.e-27*a28*a28); // p2
554 lastPAR[26]=.0006*a3; // p3
555 // The 1st max slope (pel_qs)
556 lastPAR[27]=10.+4.e-8*a12*a; // p1
557 lastPAR[28]=.114; // p2
558 lastPAR[29]=.003; // p3
559 lastPAR[30]=2.e-23; // p4
560 // The effective pre-exponent (pel_ss)
561 lastPAR[31]=1./(1.+.0001*a8); // p1
562 lastPAR[32]=1.5e-4/(1.+5.e-6*a12); // p2
563 lastPAR[33]=.03; // p3
564 // The effective slope (pel_sb)
565 lastPAR[34]=a/2; // p1
566 lastPAR[35]=2.e-7*a4; // p2
567 lastPAR[36]=4.; // p3
568 lastPAR[37]=64./a3; // p4
569 // The gloria pre-exponent (pel_us)
570 lastPAR[38]=1.e8*std::exp(.32*asa); // p1
571 lastPAR[39]=20.*std::exp(.45*asa); // p2
572 lastPAR[40]=7.e3+2.4e6/a5; // p3
573 lastPAR[41]=2.5e5*std::exp(.085*a3); // p4
574 lastPAR[42]=2.5*a; // p5
575 // The gloria slope (pel_ub)
576 lastPAR[43]=920.+.03*a8*a3; // p1
577 lastPAR[44]=93.+.0023*a12; // p2
578#ifdef pdebug
579 G4cout<<"G4QaBElCS::CalcCS:la "<<lastPAR[38]<<", "<<lastPAR[39]<<", "<<lastPAR[40]
580 <<", "<<lastPAR[42]<<", "<<lastPAR[43]<<", "<<lastPAR[44]<<G4endl;
581#endif
582 }
583 else // A > Li6 (li7, ...)
584 {
585 G4double p1a10=2.2e-28*a10;
586 G4double r4a16=6.e14/a16;
587 G4double s4a16=r4a16*r4a16;
588 // a24
589 // a36
590 // The main pre-exponent (peh_sg)
591 lastPAR[ 9]=4.5*std::pow(a,1.15); // p1
592 lastPAR[10]=.06*std::pow(a,.6); // p2
593 lastPAR[11]=.6*a/(1.+2.e15/a16); // p3
594 lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32); // p4
595 lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5); // p5
596 lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12); // p6
597 // The main slope (peh_sl)
598 lastPAR[15]=400./a12+2.e-22*a9; // p1
599 lastPAR[16]=1.e-32*a12/(1.+5.e22/a14); // p2
600 lastPAR[17]=1000./a2+9.5*sa*ssa; // p3
601 lastPAR[18]=4.e-6*a*asa+1.e11/a16; // p4
602 lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16); // p5
603 lastPAR[20]=9.+100./a; // p6
604 // The main quadratic (peh_sh)
605 lastPAR[21]=.002*a3+3.e7/a6; // p1
606 lastPAR[22]=7.e-15*a4*asa; // p2
607 lastPAR[23]=9000./a4; // p3
608 // The 1st max pre-exponent (peh_qq)
609 lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4); // p1
610 lastPAR[25]=1.e-5*a2+2.e14/a16; // p2
611 lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12); // p3
612 lastPAR[27]=.016*asa/(1.+5.e16/a16); // p4
613 // The 1st max slope (peh_qs)
614 lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1
615 lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11); // p2
616 lastPAR[30]=11.*a3/(1.+7.e23/a16/a8); // p3
617 lastPAR[31]=100./asa; // p4
618 // The 2nd max pre-exponent (peh_ss)
619 lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4); // p1
620 lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); // p2
621 lastPAR[34]=1.3+3.e5/a4; // p3
622 lastPAR[35]=500./(a2+50.)+3; // p4
623 lastPAR[36]=1.e-9/a+s4a16*s4a16; // p5
624 // The 2nd max slope (peh_sb)
625 lastPAR[37]=.4*asa+3.e-9*a6; // p1
626 lastPAR[38]=.0005*a5; // p2
627 lastPAR[39]=.002*a5; // p3
628 lastPAR[40]=10.; // p4
629 // The effective pre-exponent (peh_us)
630 lastPAR[41]=.05+.005*a; // p1
631 lastPAR[42]=7.e-8/sa; // p2
632 lastPAR[43]=.8*sa; // p3
633 lastPAR[44]=.02*sa; // p4
634 lastPAR[45]=1.e8/a3; // p5
635 lastPAR[46]=3.e32/(a32+1.e32); // p6
636 // The effective slope (peh_ub)
637 lastPAR[47]=24.; // p1
638 lastPAR[48]=20./sa; // p2
639 lastPAR[49]=7.e3*a/(sa+1.); // p3
640 lastPAR[50]=900.*sa/(1.+500./a3); // p4
641#ifdef pdebug
642 G4cout<<"G4QaBElCS::CalcCS:ha "<<lastPAR[41]<<", "<<lastPAR[42]<<", "<<lastPAR[43]
643 <<", "<<lastPAR[44]<<", "<<lastPAR[45]<<", "<<lastPAR[46]<<G4endl;
644#endif
645 }
646 // Parameter for lowEnergyNeutrons
647 lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
648 }
649 lastPAR[nLast]=pwd;
650 // and initialize the zero element of the table
651 G4double lp=lPMin; // ln(momentum)
652 G4bool memCS=onlyCS; // ??
653 onlyCS=false;
654 lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
655 onlyCS=memCS;
656 lastSST[0]=theSS;
657 lastS1T[0]=theS1;
658 lastB1T[0]=theB1;
659 lastS2T[0]=theS2;
660 lastB2T[0]=theB2;
661 lastS3T[0]=theS3;
662 lastB3T[0]=theB3;
663 lastS4T[0]=theS4;
664 lastB4T[0]=theB4;
665#ifdef pdebug
666 G4cout<<"G4QAntiBaryonElasticCrossSection::GetPTables:ip=0(init), lp="<<lp<<",S1="
667 <<theS1<<",B1="<<theB1<<",S2="<<theS2<<",B2="<<theB3<<",S3="<<theS3
668 <<",B3="<<theB3<<",S4="<<theS4<<",B4="<<theB4<<G4endl;
669#endif
670 }
671 if(LP>ILP)
672 {
673 G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
674 if(ini<0) ini=0;
675 if(ini<nPoints)
676 {
677 G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
678 if(fin>=nPoints) fin=nLast; // Limit of the tabular initialization
679 if(fin>=ini)
680 {
681 G4double lp=0.;
682 for(G4int ip=ini; ip<=fin; ip++) // Calculate tabular CS,S1,B1,S2,B2,S3,B3
683 {
684 lp=lPMin+ip*dlnP; // ln(momentum)
685 G4bool memCS=onlyCS;
686 onlyCS=false;
687 lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
688 onlyCS=memCS;
689 lastSST[ip]=theSS;
690 lastS1T[ip]=theS1;
691 lastB1T[ip]=theB1;
692 lastS2T[ip]=theS2;
693 lastB2T[ip]=theB2;
694 lastS3T[ip]=theS3;
695 lastB3T[ip]=theB3;
696 lastS4T[ip]=theS4;
697 lastB4T[ip]=theB4;
698#ifdef pdebug
699 G4cout<<"G4QAntiBaryonElasticCrossSection::GetPTables:ip="<<ip<<",lp="<<lp
700 <<",S1="<<theS1<<",B1="<<theB1<<",S2="<<theS2<<",B2="<<theB2<<",S3="
701 <<theS3<<",B3="<<theB3<<",S4="<<theS4<<",B4="<<theB4<<G4endl;
702#endif
703 }
704 return lp;
705 }
706 else G4cout<<"*Warning*G4QAntiBaryonElasticCrossSection::GetPTables: PDG="<<PDG
707 <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
708 <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
709 }
710 else G4cout<<"*Warning*G4QAntiBaryonElasticCrossSection::GetPTables: PDG="<<PDG
711 <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
712 <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
713 }
714#ifdef pdebug
715 else G4cout<<"*Warning*G4QAntiBaryonElasticCrossSection::GetPTab:PDG="<<PDG<<",Z="<<tgZ
716 <<", N="<<tgN<<", LP="<<LP<<" <= ILP="<<ILP<<" nothing is done!"<<G4endl;
717#endif
718 }
719 else
720 {
721 // G4cout<<"*Error*G4QAntiBaryonElasticCrossSection::GetPTables: PDG="<<PDG<<", Z="<<tgZ
722 // <<", N="<<tgN<<", while it is defined only for Anti Baryons"<<G4endl;
723 // throw G4QException("G4QAntiBaryonElasticCrossSection::GetPTables:onlyaBA implemented");
725 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
726 << ", while it is defined only for Anti Baryons" << G4endl;
727 G4Exception("G4QAntiBaryonElasticCrossSection::GetPTables()", "HAD_CHPS_0000",
728 FatalException, ed);
729 }
730 return ILP;
731}
732
733// Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
735{
736 static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
737 static const G4double third=1./3.;
738 static const G4double fifth=1./5.;
739 static const G4double sevth=1./7.;
740#ifdef tdebug
741 G4cout<<"G4QAnBaElCS::GetExcT: F="<<onlyCS<<",Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<G4endl;
742#endif
743 if(PDG<-3334 || PDG>-1111)G4cout<<"*Warning*G4QAntiBaryonElCS::GetExT:PDG="<<PDG<<G4endl;
744 if(onlyCS)G4cout<<"WarningG4QAntiBaryonElasticCrossSection::GetExchanT:onlyCS=1"<<G4endl;
745 if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
746 G4double q2=0.;
747 if(tgZ==1 && tgN==0) // ===> p+p=p+p
748 {
749#ifdef tdebug
750 G4cout<<"G4QAnBarElCS::GetExchangeT: TM="<<lastTM<<",S1="<<theS1<<",B1="<<theB1<<",S2="
751 <<theS2<<",B2="<<theB2<<",S3="<<theS3<<",B3="<<theB3<<",GeV2="<<GeVSQ<<G4endl;
752#endif
753 G4double E1=lastTM*theB1;
754 G4double R1=(1.-std::exp(-E1));
755#ifdef tdebug
756 G4double ts1=-std::log(1.-R1)/theB1;
757 G4double ds1=std::fabs(ts1-lastTM)/lastTM;
758 if(ds1>.0001)
759 G4cout<<"*Warning*G4QAntiBaryonElasticCrossSection::GetExT:1p "<<ts1<<"#"<<lastTM
760 <<",d="<<ds1<<",R1="<<R1<<",E1="<<E1<<G4endl;
761#endif
762 G4double E2=lastTM*theB2;
763 G4double R2=(1.-std::exp(-E2*E2*E2));
764#ifdef tdebug
765 G4double ts2=std::pow(-std::log(1.-R2),.333333333)/theB2;
766 G4double ds2=std::fabs(ts2-lastTM)/lastTM;
767 if(ds2>.0001)
768 G4cout<<"*Warning*G4QAntiBaryonElasticCrossSection::GetExT:2p "<<ts2<<"#"<<lastTM
769 <<",d="<<ds2<<",R2="<<R2<<",E2="<<E2<<G4endl;
770#endif
771 G4double E3=lastTM*theB3;
772 G4double R3=(1.-std::exp(-E3));
773#ifdef tdebug
774 G4double ts3=-std::log(1.-R3)/theB3;
775 G4double ds3=std::fabs(ts3-lastTM)/lastTM;
776 if(ds3>.0001)
777 G4cout<<"*Warning*G4QAntiBaryonElasticCrossSection::GetExT:3p "<<ts3<<"#"<<lastTM
778 <<",d="<<ds3<<",R3="<<R1<<",E3="<<E3<<G4endl;
779#endif
780 G4double I1=R1*theS1/theB1;
781 G4double I2=R2*theS2;
782 G4double I3=R3*theS3;
783 G4double I12=I1+I2;
784 G4double rand=(I12+I3)*G4UniformRand();
785 if (rand<I1 )
786 {
787 G4double ran=R1*G4UniformRand();
788 if(ran>1.) ran=1.;
789 q2=-std::log(1.-ran)/theB1;
790 }
791 else if(rand<I12)
792 {
793 G4double ran=R2*G4UniformRand();
794 if(ran>1.) ran=1.;
795 q2=-std::log(1.-ran);
796 if(q2<0.) q2=0.;
797 q2=std::pow(q2,third)/theB2;
798 }
799 else
800 {
801 G4double ran=R3*G4UniformRand();
802 if(ran>1.) ran=1.;
803 q2=-std::log(1.-ran)/theB3;
804 }
805 }
806 else
807 {
808 G4double a=tgZ+tgN;
809#ifdef tdebug
810 G4cout<<"G4QAntiBaryonElasticCrossSection::GetExT:a="<<a<<",t="<<lastTM<<",S1="<<theS1
811 <<",B1="<<theB1<<",SS="<<theSS<<",S2="<<theS2<<",B2="<<theB2<<",S3="<<theS3
812 <<",B3="<<theB3<<",S4="<<theS4<<",B4="<<theB4<<G4endl;
813#endif
814 G4double E1=lastTM*(theB1+lastTM*theSS);
815 G4double R1=(1.-std::exp(-E1));
816 G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
817#ifdef tdebug
818 G4double ts1=-std::log(1.-R1)/theB1;
819 if(std::fabs(tss)>1.e-7) ts1=(std::sqrt(theB1*(theB1+(tss+tss)*ts1))-theB1)/tss;
820 G4double ds1=(ts1-lastTM)/lastTM;
821 if(ds1>.0001)
822 G4cout<<"*Warning*G4QAntiBaryonElasticCrossSection::GetExT:1a "<<ts1<<"#"<<lastTM
823 <<",d="<<ds1<<",R1="<<R1<<",E1="<<E1<<G4endl;
824#endif
825 G4double tm2=lastTM*lastTM;
826 G4double E2=lastTM*tm2*theB2; // power 3 for lowA, 5 for HighA (1st)
827 if(a>6.5)E2*=tm2; // for heavy nuclei
828 G4double R2=(1.-std::exp(-E2));
829#ifdef tdebug
830 G4double ts2=-std::log(1.-R2)/theB2;
831 if(a<6.5)ts2=std::pow(ts2,third);
832 else ts2=std::pow(ts2,fifth);
833 G4double ds2=std::fabs(ts2-lastTM)/lastTM;
834 if(ds2>.0001)
835 G4cout<<"*Warning*G4QAntiBaryonElasticCrossSection::GetExT:2a "<<ts2<<"#"<<lastTM
836 <<",d="<<ds2<<",R2="<<R2<<",E2="<<E2<<G4endl;
837#endif
838 G4double E3=lastTM*theB3;
839 if(a>6.5)E3*=tm2*tm2*tm2; // power 1 for lowA, 7 (2nd) for HighA
840 G4double R3=(1.-std::exp(-E3));
841#ifdef tdebug
842 G4double ts3=-std::log(1.-R3)/theB3;
843 if(a>6.5)ts3=std::pow(ts3,sevth);
844 G4double ds3=std::fabs(ts3-lastTM)/lastTM;
845 if(ds3>.0001)
846 G4cout<<"*Warning*G4QAntiBaryonElasticCrossSection::GetExT:3a "<<ts3<<"#"<<lastTM
847 <<",d="<<ds3<<",R3="<<R3<<",E3="<<E3<<G4endl;
848#endif
849 G4double E4=lastTM*theB4;
850 G4double R4=(1.-std::exp(-E4));
851#ifdef tdebug
852 G4double ts4=-std::log(1.-R4)/theB4;
853 G4double ds4=std::fabs(ts4-lastTM)/lastTM;
854 if(ds4>.0001)
855 G4cout<<"*Warning*G4QAntiBaryonElasticCrossSection::GetExT:4a "<<ts4<<"#"<<lastTM
856 <<",d="<<ds4<<",R4="<<R4<<",E4="<<E4<<G4endl;
857#endif
858 G4double I1=R1*theS1;
859 G4double I2=R2*theS2;
860 G4double I3=R3*theS3;
861 G4double I4=R4*theS4;
862 G4double I12=I1+I2;
863 G4double I13=I12+I3;
864 G4double rand=(I13+I4)*G4UniformRand();
865#ifdef tdebug
866 G4cout<<"G4QaBElCS::GExT:1="<<I1<<",2="<<I2<<",3="<<I3<<",4="<<I4<<",r="<<rand<<G4endl;
867#endif
868 if(rand<I1)
869 {
870 G4double ran=R1*G4UniformRand();
871 if(ran>1.) ran=1.;
872 q2=-std::log(1.-ran)/theB1;
873 if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
874#ifdef tdebug
875 G4cout<<"G4QaBElCS::GExT:Q2="<<q2<<",ss="<<tss/2<<",b1="<<theB1<<",t1="<<ts1<<G4endl;
876#endif
877 }
878 else if(rand<I12)
879 {
880 G4double ran=R2*G4UniformRand();
881 if(ran>1.) ran=1.;
882 q2=-std::log(1.-ran)/theB2;
883 if(q2<0.) q2=0.;
884 if(a<6.5) q2=std::pow(q2,third);
885 else q2=std::pow(q2,fifth);
886#ifdef tdebug
887 G4cout<<"G4QaBaElCS::GetExT:Q2="<<q2<<",r2="<<R2<<",b2="<<theB2<<",t2="<<ts2<<G4endl;
888#endif
889 }
890 else if(rand<I13)
891 {
892 G4double ran=R3*G4UniformRand();
893 if(ran>1.) ran=1.;
894 q2=-std::log(1.-ran)/theB3;
895 if(q2<0.) q2=0.;
896 if(a>6.5) q2=std::pow(q2,sevth);
897#ifdef tdebug
898 G4cout<<"G4QaBaElCS::GetExT:Q2="<<q2<<",r3="<<R2<<",b3="<<theB2<<",t3="<<ts2<<G4endl;
899#endif
900 }
901 else
902 {
903 G4double ran=R4*G4UniformRand();
904 if(ran>1.) ran=1.;
905 q2=-std::log(1.-ran)/theB4;
906 if(a<6.5) q2=lastTM-q2; // u reduced for lightA (starts from 0)
907#ifdef tdebug
908 G4cout<<"G4QaBElCS::GExT:Q2="<<q2<<",m="<<lastTM<<",b4="<<theB3<<",t4="<<ts3<<G4endl;
909#endif
910 }
911 }
912 if(q2<0.) q2=0.;
913 if(!(q2>=-1.||q2<=1.))G4cout<<"*NAN*G4QaBElasticCrossSect::GetExchangeT:-t="<<q2<<G4endl;
914 if(q2>lastTM)
915 {
916#ifdef tdebug
917 G4cout<<"*Warning*G4QAntiBaryonElasticCrossSection::GExT:-t="<<q2<<">"<<lastTM<<G4endl;
918#endif
919 q2=lastTM;
920 }
921 return q2*GeVSQ;
922}
923
924// Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
926{
927 static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
928#ifdef tdebug
929 G4cout<<"G4QAnBarElCS::GetSlope:"<<onlyCS<<", Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<G4endl;
930#endif
931 if(onlyCS)G4cout<<"WarningG4QAntiBaryonElasticCrossSection::GetSlope:onlCS=true"<<G4endl;
932 if(lastLP<-4.3) return 0.; // S-wave for p<14 MeV/c (kinE<.1MeV)
933 if(PDG<-3334 || PDG>-1111)
934 {
935 // G4cout<<"*Error*G4QAntiBaryonElasticCrossSection::GetSlope: PDG="<<PDG<<", Z="<<tgZ
936 // <<", N="<<tgN<<", while it is defined only for Anti Baryons"<<G4endl;
937 // throw G4QException("G4QAntiBaryonElasticCrossSection::GetSlope: AnBa are implemented");
939 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
940 << ", while it is defined only for Anti Baryons" << G4endl;
941 G4Exception("G4QAntiBaryonElasticCrossSection::GetSlope()", "HAD_CHPS_0000",
942 FatalException, ed);
943 }
944 if(theB1<0.) theB1=0.;
945 if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QaBaElasticCrossS::Getslope:"<<theB1<<G4endl;
946 return theB1/GeVSQ;
947}
948
949// Returns half max(Q2=-t) in independent units (MeV^2)
951{
952 static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
953 return lastTM*HGeVSQ;
954}
955
956// lastLP is used, so calculating tables, one need to remember and then recover lastLP
957G4double G4QAntiBaryonElasticCrossSection::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
958 G4int tgN)
959{
960 if(PDG<-3334 || PDG>-1111) G4cout<<"*Warning*G4QAntiBaryElCS::GetTabV:PDG="<<PDG<<G4endl;
961 if(tgZ<0 || tgZ>92)
962 {
963 G4cout<<"*Warning*G4QAntiBaryonElCS::GetTabValue:(1-92) NoIsotopesFor Z="<<tgZ<<G4endl;
964 return 0.;
965 }
966 G4int iZ=tgZ-1; // Z index
967 if(iZ<0)
968 {
969 iZ=0; // conversion of the neutron target to the proton target
970 tgZ=1;
971 tgN=0;
972 }
973 //if(nN[iZ][0] < 0)
974 //{
975#ifdef isodebug
976 // G4cout<<"*Warning*G4QAntiBaryonElastCS::GetTabValue: NoIsotopes for Z="<<tgZ<<G4endl;
977#endif
978 // return 0.;
979 //}
980#ifdef pdebug
981 G4cout<<"G4QaBElasticCS::GetTabVal:l="<<lp<<",Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<G4endl;
982#endif
983 G4double p=std::exp(lp); // momentum
984 G4double sp=std::sqrt(p); // sqrt(p)
985 G4double p2=p*p;
986 G4double p3=p2*p;
987 G4double p4=p3*p;
988 if ( tgZ == 1 && tgN == 0 ) // PiMin+P
989 {
990 G4double dl2=lp-lastPAR[6]; // ld ?
991 theSS=lastPAR[29];
992 theS1=(lastPAR[7]+lastPAR[8]*dl2*dl2)/(1.+lastPAR[9]/p4/p)+
993 (lastPAR[10]/p2+lastPAR[11]*p)/(p4+lastPAR[12]*sp);
994 theB1=lastPAR[13]*std::pow(p,lastPAR[14])/(1.+lastPAR[15]/p3);
995 theS2=lastPAR[16]+lastPAR[17]/(p4+lastPAR[18]*p);
996 theB2=lastPAR[19]+lastPAR[20]/(p4+lastPAR[21]/sp);
997 theS3=lastPAR[22]+lastPAR[23]/(p4*p4+lastPAR[24]*p2+lastPAR[25]);
998 theB3=lastPAR[26]+lastPAR[27]/(p4+lastPAR[28]);
999 theS4=0.;
1000 theB4=0.;
1001#ifdef tdebug
1002 G4cout<<"G4QAntiBarElasticCS::GetTableValues:TM="<<lastTM<<",S1="<<theS1<<",B1="<<theB1
1003 <<",S2="<<theS2<<",B2="<<theB2<<",S3="<<theS1<<",B3="<<theB1<<G4endl;
1004#endif
1005 // Returns the total elastic pim-p cross-section (to avoid spoiling lastSIG)
1006 G4double ye=std::exp(lp*lastPAR[0]);
1007 G4double dp=lp-lastPAR[1];
1008 return lastPAR[2]/(ye+lastPAR[3])+lastPAR[4]*dp*dp+lastPAR[5];
1009 }
1010 else
1011 {
1012 G4double p5=p4*p;
1013 G4double p6=p5*p;
1014 G4double p8=p6*p2;
1015 G4double p10=p8*p2;
1016 G4double p12=p10*p2;
1017 G4double p16=p8*p8;
1018 //G4double p24=p16*p8;
1019 G4double dl=lp-5.;
1020 G4double a=tgZ+tgN;
1021 G4double pah=std::pow(p,a/2);
1022 G4double pa=pah*pah;
1023 G4double pa2=pa*pa;
1024 if(a<6.5)
1025 {
1026 theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
1027 (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
1028 theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
1029 theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
1030 theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
1031 theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
1032 theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
1033 theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
1034 theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+
1035 lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42])));
1036 theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
1037#ifdef tdebug
1038 G4cout<<"G4QaBaElCS::GetTabV: lA, p="<<p<<",S1="<<theS1<<",B1="<<theB1<<",SS="<<theSS
1039 <<",S2="<<theS2<<",B2="<<theB2<<",S3="<<theS3<<",B3="<<theB3<<",S4="<<theS4
1040 <<",B4="<<theB4<<G4endl;
1041#endif
1042 }
1043 else
1044 {
1045 theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
1046 lastPAR[13]/(p5+lastPAR[14]/p16);
1047 theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+
1048 lastPAR[17]/(1.+lastPAR[18]/p4);
1049 theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4);
1050 theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
1051 theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]);
1052 theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
1053 lastPAR[33]/(1.+lastPAR[34]/p6);
1054 theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
1055 theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
1056 (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
1057 theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
1058#ifdef tdebug
1059 G4cout<<"G4QaBaElCS::GetTabV: hA, p="<<p<<",S1="<<theS1<<",B1="<<theB1<<",SS="<<theSS
1060 <<",S2="<<theS2<<",B2="<<theB2<<",S3="<<theS3<<",B3="<<theB3<<",S4="<<theS4
1061 <<",B4="<<theB4<<G4endl;
1062#endif
1063 }
1064 // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
1065#ifdef tdebug
1066 G4cout<<"G4QAntiBarElCS::GetTabV: PDG="<<PDG<<",P="<<p<<",N="<<tgN<<",Z="<<tgZ<<G4endl;
1067#endif
1068 G4double dlp=lp-lastPAR[4]; // ax
1069 // p1 p2 p3 p4
1070 return (lastPAR[0]*dlp*dlp+lastPAR[1]+lastPAR[2]/p)/(1.+lastPAR[3]/p);
1071 }
1072 return 0.;
1073} // End of GetTableValues
1074
1075// Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
1076G4double G4QAntiBaryonElasticCrossSection::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
1077 G4double pP)
1078{
1079 static const G4double mNeut= G4QPDGCode(2112).GetMass()*.001; // MeV to GeV
1080 static const G4double mProt= G4QPDGCode(2212).GetMass()*.001; // MeV to GeV
1081 //static const G4double mLamb= G4QPDGCode(3122).GetMass()*.001; // MeV to GeV
1082 //static const G4double mHe3 = G4QPDGCode(2112).GetNuclMass(2,1,0)*.001; // MeV to GeV
1083 //static const G4double mAlph = G4QPDGCode(2112).GetNuclMass(2,2,0)*.001; // MeV to GeV
1084 //static const G4double mDeut = G4QPDGCode(2112).GetNuclMass(1,1,0)*.001; // MeV to GeV
1085 static const G4double mNuc2= sqr((mProt+mNeut)/2);
1086 //static const G4double mProt2= mProt*mProt;
1087 //static const G4double mNeut2= mNeut*mNeut;
1088 //static const G4double mDeut2= mDeut*mDeut;
1089 G4double pP2=pP*pP; // squared momentum of the projectile
1090 if(tgZ || tgN>-1) // ---> pipA
1091 {
1092 G4double mt=G4QPDGCode(90000000+tgZ*1000+tgN).GetMass()*.001; // Target mass in GeV
1093 G4double dmt=mt+mt;
1094 G4double s_value=dmt*std::sqrt(pP2+mNuc2)+mNuc2+mt*mt; // Mondelstam s (@@ other AntiBar?)
1095 return dmt*dmt*pP2/s_value;
1096 }
1097 else
1098 {
1099 // G4cout<<"*Error*G4QAntiBaryonElasticCrossSection::GetQ2ma:PDG="<<PDG<<",Z="<<tgZ<<",N="
1100 // <<tgN<<", while it is defined only for p projectiles & Z_target>0"<<G4endl;
1101 // throw G4QException("G4QAntiBaryonElasticCrossSection::GetQ2max: only aBA implemented");
1103 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
1104 << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
1105 G4Exception("G4QAntiBaryonElasticCrossSection::GetQ2max()", "HAD_CHPS_0000",
1106 FatalException, ed);
1107 return 0;
1108 }
1109}
@ FatalException
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
G4double GetExchangeT(G4int tZ, G4int tN, G4int pPDG)
G4double GetSlope(G4int tZ, G4int tN, G4int pPDG)
virtual G4double GetCrossSection(G4bool fCS, G4double pMom, G4int tgZ, G4int tgN, G4int pPDG=-2212)
G4double CalculateCrossSection(G4bool CS, G4int F, G4int I, G4int pPDG, G4int Z, G4int N, G4double pP)
G4double GetMass()
Definition: G4QPDGCode.cc:693
virtual G4double ThresholdEnergy(G4int Z, G4int N, G4int PDG=0)
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
std::ostringstream G4ExceptionDescription
Definition: globals.hh:76
T sqr(const T &x)
Definition: templates.hh:145