Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4QANuMuNuclearCrossSection.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29//
30// G4 Physics class: G4QANuMuNuclearCrossSection for (anu_mu,mu+)A cross sections
31// Created: M.V. Kossov, CERN/ITEP(Moscow), 10-OCT-01
32// The last update: M.V. Kossov, CERN/ITEP (Moscow) 17-Oct-03
33//
34// ****************************************************************************************
35// ********** This CLASS is temporary moved from the photolepton_hadron directory *********
36// ******* DO NOT MAKE ANY CHANGE! With time it'll move back to photolepton...(M.K.) ******
37// ****************************************************************************************
38// ----------------------------------------------------------------------------------------
39// Short desctription: antinu_mu -> mu cross-section
40// ----------------------------------------------------------------------------------------
41
42//#define debug
43//#define edebug
44//#define pdebug
45//#define ppdebug
46//#define tdebug
47//#define sdebug
48
50#include "G4SystemOfUnits.hh"
51
52// Initialization of the
53G4bool G4QANuMuNuclearCrossSection::onlyCS=true;//Flag to calculate only CS (not QE)
54G4double G4QANuMuNuclearCrossSection::lastSig=0.;//Last calculated total cross section
55G4double G4QANuMuNuclearCrossSection::lastQEL=0.;//Last calculated quasi-el. cross section
56G4int G4QANuMuNuclearCrossSection::lastL=0; //Last used in cross section TheLastBin
57G4double G4QANuMuNuclearCrossSection::lastE=0.; //Last used in cross section TheEnergy
58G4double* G4QANuMuNuclearCrossSection::lastEN=0; //Pointer to the Energy Scale of TX & QE
59G4double* G4QANuMuNuclearCrossSection::lastTX=0; //Pointer to the LastArray of TX function
60G4double* G4QANuMuNuclearCrossSection::lastQE=0; //Pointer to the LastArray of QE function
61G4int G4QANuMuNuclearCrossSection::lastPDG=0; // The last PDG code of the projectile
62G4int G4QANuMuNuclearCrossSection::lastN=0; // The last N of calculated nucleus
63G4int G4QANuMuNuclearCrossSection::lastZ=0; // The last Z of calculated nucleus
64G4double G4QANuMuNuclearCrossSection::lastP=0.; // Last used in cross section Momentum
65G4double G4QANuMuNuclearCrossSection::lastTH=0.; // Last threshold momentum
66G4double G4QANuMuNuclearCrossSection::lastCS=0.; // Last value of the Cross Section
67G4int G4QANuMuNuclearCrossSection::lastI=0; // The last position in the DAMDB
68std::vector<G4double*>* G4QANuMuNuclearCrossSection::TX = new std::vector<G4double*>;
69std::vector<G4double*>* G4QANuMuNuclearCrossSection::QE = new std::vector<G4double*>;
70
71// Returns Pointer to the G4VQCrossSection class
73{
74 static G4QANuMuNuclearCrossSection theCrossSection;//**Static body of the Cross Section**
75 return &theCrossSection;
76}
77
79{
80 G4int lens=TX->size();
81 for(G4int i=0; i<lens; ++i) delete[] (*TX)[i];
82 delete TX;
83 G4int hens=QE->size();
84 for(G4int i=0; i<hens; ++i) delete[] (*QE)[i];
85 delete QE;
86}
87
88// The main member function giving the collision cross section (P is in IU, CS is in mb)
89// Make pMom in independent units ! (Now it is MeV)
91 G4int tgZ, G4int tgN, G4int pPDG)
92{
93 static G4int j; // A#0f records found in DB for this projectile
94 static std::vector <G4int> colPDG;// Vector of the projectile PDG code
95 static std::vector <G4int> colN; // Vector of N for calculated nuclei (isotops)
96 static std::vector <G4int> colZ; // Vector of Z for calculated nuclei (isotops)
97 static std::vector <G4double> colP; // Vector of last momenta for the reaction
98 static std::vector <G4double> colTH; // Vector of energy thresholds for the reaction
99 static std::vector <G4double> colCS; // Vector of last cross sections for the reaction
100 // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
101 G4double pEn=pMom;
102#ifdef debug
103 G4cout<<"G4QAMNCS::GetCS:>> f="<<fCS<<", p="<<pMom<<", Z="<<tgZ<<"("<<lastZ<<") ,N="<<tgN
104 <<"("<<lastN<<"),PDG="<<pPDG<<"("<<lastPDG<<"), T="<<pEn<<"("<<lastTH<<")"<<",Sz="
105 <<colN.size()<<G4endl;
106 //CalculateCrossSection(fCS,-27,j,lastPDG,lastZ,lastN,pMom); // DUMMY TEST
107#endif
108 if(pPDG!=-14)
109 {
110#ifdef debug
111 G4cout<<"G4QAMNCS::GetCS: *** Found pPDG="<<pPDG<<" =--=> CS=0"<<G4endl;
112 //CalculateCrossSection(fCS,-27,j,lastPDG,lastZ,lastN,pMom); // DUMMY TEST
113#endif
114 return 0.; // projectile PDG=0 is a mistake (?!) @@
115 }
116 G4bool in=false; // By default the isotope must be found in the AMDB
117 if(tgN!=lastN || tgZ!=lastZ || pPDG!=lastPDG)// The nucleus was not the last used isotope
118 {
119 in = false; // By default the isotope haven't be found in AMDB
120 lastP = 0.; // New momentum history (nothing to compare with)
121 lastPDG = pPDG; // The last PDG of the projectile
122 lastN = tgN; // The last N of the calculated nucleus
123 lastZ = tgZ; // The last Z of the calculated nucleus
124 lastI = colN.size(); // Size of the Associative Memory DB in the heap
125 j = 0; // A#0f records found in DB for this projectile
126 if(lastI) for(G4int i=0; i<lastI; i++) if(colPDG[i]==pPDG) // The partType is found
127 { // The nucleus with projPDG is found in AMDB
128 if(colN[i]==tgN && colZ[i]==tgZ)
129 {
130 lastI=i;
131 lastTH =colTH[i]; // Last THreshold (A-dependent)
132#ifdef pdebug
133 G4cout<<"G4QAMNCS::GetCS:*Found*P="<<pMom<<",Threshold="<<lastTH<<",j="<<j<<G4endl;
134 //CalculateCrossSection(fCS,-27,j,lastPDG,lastZ,lastN,pMom); // DUMMY TEST
135#endif
136 if(pEn<=lastTH)
137 {
138#ifdef pdebug
139 G4cout<<"G4QAMNCS::GetCS:Found T="<<pEn<<" < Threshold="<<lastTH<<",X=0"<<G4endl;
140 //CalculateCrossSection(fCS,-27,j,lastPDG,lastZ,lastN,pMom); // DUMMY TEST
141#endif
142 return 0.; // Energy is below the Threshold value
143 }
144 lastP =colP [i]; // Last Momentum (A-dependent)
145 lastCS =colCS[i]; // Last CrossSect (A-dependent)
146 if(std::fabs(lastP/pMom-1.)<tolerance)
147 {
148#ifdef pdebug
149 G4cout<<"G4QAMNCS::GetCS:P="<<pMom<<",CS="<<lastCS*millibarn<<G4endl;
150 //CalculateCrossSection(fCS,-27,j,lastPDG,lastZ,lastN,pMom); // DUMMY TEST
151#endif
152 return lastCS*millibarn; // Use theLastCS
153 }
154 in = true; // This is the case when the isotop is found in DB
155 // Momentum pMom is in IU ! @@ Units
156#ifdef pdebug
157 G4cout<<"G4QAMNCS::G:UpdaDB P="<<pMom<<",f="<<fCS<<",lI="<<lastI<<",j="<<j<<G4endl;
158#endif
159 lastCS=CalculateCrossSection(fCS,-1,j,lastPDG,lastZ,lastN,pMom); // read & update
160#ifdef pdebug
161 G4cout<<"G4QAMNCS::GetCrosSec: *****> New (inDB) Calculated CS="<<lastCS<<G4endl;
162 //CalculateCrossSection(fCS,-27,j,lastPDG,lastZ,lastN,pMom); // DUMMY TEST
163#endif
164 if(lastCS<=0. && pEn>lastTH) // Correct the threshold
165 {
166#ifdef pdebug
167 G4cout<<"G4QAMNCS::GetCS: New T="<<pEn<<"(CS=0) > Threshold="<<lastTH<<G4endl;
168#endif
169 lastTH=pEn;
170 }
171 break; // Go out of the LOOP
172 }
173#ifdef pdebug
174 G4cout<<"---G4QAMNCrossSec::GetCrosSec:pPDG="<<pPDG<<",j="<<j<<",N="<<colN[i]
175 <<",Z["<<i<<"]="<<colZ[i]<<",cPDG="<<colPDG[i]<<G4endl;
176 //CalculateCrossSection(fCS,-27,j,lastPDG,lastZ,lastN,pMom); // DUMMY TEST
177#endif
178 j++; // Increment a#0f records found in DB for this pPDG
179 }
180 if(!in) // This nucleus has not been calculated previously
181 {
182#ifdef pdebug
183 G4cout<<"G4QAMNCS::GetCrosSec:CalcNew P="<<pMom<<",f="<<fCS<<",lstI="<<lastI<<G4endl;
184#endif
185 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
186 lastCS=CalculateCrossSection(fCS,0,j,lastPDG,lastZ,lastN,pMom); //calculate & create
187 if(lastCS<=0.)
188 {
189 lastTH = ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
190#ifdef pdebug
191 G4cout<<"G4QAMNCrossSection::GetCrossSect: NewThresh="<<lastTH<<",T="<<pEn<<G4endl;
192#endif
193 if(pEn>lastTH)
194 {
195#ifdef pdebug
196 G4cout<<"G4QAMNCS::GetCS: First T="<<pEn<<"(CS=0) > Threshold="<<lastTH<<G4endl;
197#endif
198 lastTH=pEn;
199 }
200 }
201#ifdef pdebug
202 G4cout<<"G4QAMNCS::GetCrosSec:New CS="<<lastCS<<",lZ="<<lastN<<",lN="<<lastZ<<G4endl;
203 //CalculateCrossSection(fCS,-27,j,lastPDG,lastZ,lastN,pMom); // DUMMY TEST
204#endif
205 colN.push_back(tgN);
206 colZ.push_back(tgZ);
207 colPDG.push_back(pPDG);
208 colP.push_back(pMom);
209 colTH.push_back(lastTH);
210 colCS.push_back(lastCS);
211#ifdef pdebug
212 G4cout<<"G4QAMNCS::GetCS:1st,P="<<pMom<<"(MeV),X="<<lastCS*millibarn<<"(mb)"<<G4endl;
213 //CalculateCrossSection(fCS,-27,j,lastPDG,lastZ,lastN,pMom); // DUMMY TEST
214#endif
215 return lastCS*millibarn;
216 } // End of creation of the new set of parameters
217 else
218 {
219#ifdef pdebug
220 G4cout<<"G4QAMNCS::GetCS: Update lastI="<<lastI<<",j="<<j<<G4endl;
221#endif
222 colP[lastI]=pMom;
223 colPDG[lastI]=pPDG;
224 colCS[lastI]=lastCS;
225 }
226 } // End of parameters udate
227 else if(pEn<=lastTH)
228 {
229#ifdef pdebug
230 G4cout<<"G4QAMNCS::GetCS: Current T="<<pEn<<" < Threshold="<<lastTH<<", CS=0"<<G4endl;
231 //CalculateCrossSection(fCS,-27,j,lastPDG,lastZ,lastN,pMom); // DUMMY TEST
232#endif
233 return 0.; // Momentum is below the Threshold Value -> CS=0
234 }
235 else if(std::fabs(lastP/pMom-1.)<tolerance)
236 {
237#ifdef pdebug
238 G4cout<<"G4QAMNCS::GetCS:OldCur P="<<pMom<<"="<<pMom<<",CS="<<lastCS*millibarn<<G4endl;
239 //CalculateCrossSection(fCS,-27,j,lastPDG,lastZ,lastN,pMom); // DUMMY TEST
240#endif
241 return lastCS*millibarn; // Use theLastCS
242 }
243 else
244 {
245#ifdef pdebug
246 G4cout<<"G4QAMNCS::GetCS:UpdaCur P="<<pMom<<",f="<<fCS<<",I="<<lastI<<",j="<<j<<G4endl;
247#endif
248 lastCS=CalculateCrossSection(fCS,1,j,lastPDG,lastZ,lastN,pMom); // Only UpdateDB
249 lastP=pMom;
250 }
251#ifdef pdebug
252 G4cout<<"G4QAMNCS::GetCrSec:End,P="<<pMom<<"(MeV),CS="<<lastCS*millibarn<<"(mb)"<<G4endl;
253 //CalculateCrossSection(fCS,-27,j,lastPDG,lastZ,lastN,pMom); // DUMMY TEST
254#endif
255 return lastCS*millibarn;
256}
257
258// Gives the threshold energy = the same for all nuclei (@@ can be reduced for hevy nuclei)
260{
261 //static const G4double mNeut = G4NucleiProperties::GetNuclearMass(1,0)/GeV;
262 //static const G4double mProt = G4NucleiProperties::GetNuclearMass(1,1)/GeV;
263 //static const G4double mDeut = G4NucleiProperties::GetNuclearMass(2,1)/GeV/2.;
264 static const G4double mN=.931494043;// Nucleon mass (inside nucleus, AtomicMassUnit, GeV)
265 static const G4double dmN=mN+mN; // Doubled nucleon mass (2*AtomicMassUnit, GeV)
266 static const G4double mmu=.105658369; // Mass of a muon in GeV
267 static const G4double mmu2=mmu*mmu; // Squared mass of a muon in GeV^2
268 static const G4double thresh=mmu+mmu2/dmN; // Universal threshold in GeV
269 // ---------
270 //static const G4double infEn = 9.e27;
271 G4double dN=0.;
272 if(Z>0||N>0) dN=thresh*GeV; // @@ if upgraded, change it in a total cross section
273 //@@ "dN=mmu+mmu2/G4NucleiProperties::GetNuclearMass(<G4double>(Z+N),<G4double>(Z)/GeV"
274 return dN;
275}
276
277// The main member function giving the gamma-A cross section (E_kin in MeV, CS in mb)
279 G4int , G4int targZ, G4int targN, G4double Momentum)
280{
281 static const G4double mb38=1.E-11; // Conversion 10^-38 cm^2 to mb=10^-27 cm^2
282 static const G4int nE=65; // !! If change this, change it in GetFunctions() (*.hh) !!
283 static const G4int mL=nE-1;
284 static const G4double mN=.931494043;// Nucleon mass (inside nucleus, AtomicMassUnit, GeV)
285 static const G4double dmN=mN+mN; // Doubled nucleon mass (2*AtomicMassUnit, GeV)
286 static const G4double mmu=.105658369; // Mass of a muon in GeV
287 static const G4double mmu2=mmu*mmu;// Squared mass of a muon in GeV^2
288 static const G4double EMi=mmu+mmu2/dmN; // Universal threshold of the reaction in GeV
289 static const G4double EMa=300.; // Maximum tabulated Energy of nu_mu in GeV
290 // *** Begin of the Associative memory for acceleration of the cross section calculations
291 static std::vector <G4double> colH;//?? Vector of HighEnergyCoefficients (functional)
292 static G4bool first=true; // Flag of initialization of the energy axis
293 // *** End of Static Definitions (Associative Memory) ***
294 //const G4double Energy = aPart->GetKineticEnergy()/MeV; // Energy of the Muon
295 //G4double TotEnergy2=Momentum;
296 onlyCS=CS; // Flag to calculate only CS (not TX & QE)
297 lastE=Momentum/GeV; // Kinetic energy of the muon neutrino (in GeV!)
298 if (lastE<=EMi) // Energy is below the minimum energy in the table
299 {
300 lastE=0.;
301 lastSig=0.;
302 return 0.;
303 }
304 G4int Z=targZ; // New Z, which can change the sign
305 if(F<=0) // This isotope was not the last used isotop
306 {
307 if(F<0) // This isotope was found in DAMDB =-------=> RETRIEVE
308 {
309 lastTX =(*TX)[I]; // Pointer to the prepared TX function (same isotope)
310 lastQE =(*QE)[I]; // Pointer to the prepared QE function (same isotope)
311 }
312 else // This isotope wasn't calculated previously => CREATE
313 {
314 if(first)
315 {
316 lastEN = new G4double[nE]; // This must be done only once!
317 Z=-Z; // To explain GetFunctions that E-axis must be filled
318 first=false; // To make it only once
319 }
320 lastTX = new G4double[nE]; // Allocate memory for the new TX function
321 lastQE = new G4double[nE]; // Allocate memory for the new QE function
322 G4int res=GetFunctions(Z,targN,lastTX,lastQE,lastEN);//@@analize(0=first,-1=bad,1=OK)
323 if(res<0) G4cerr<<"*W*G4NuMuNuclearCS::CalcCrossSect:Bad Function Retrieve"<<G4endl;
324 // *** The synchronization check ***
325 G4int sync=TX->size();
326 if(sync!=I) G4cerr<<"***G4NuMuNuclearCS::CalcCrossSect:Sync.="<<sync<<"#"<<I<<G4endl;
327 TX->push_back(lastTX);
328 QE->push_back(lastQE);
329 } // End of creation of the new set of parameters
330 } // End of parameters udate
331 // =---------------= NOW Calculate the Cross Section =-------------------=
332 if (lastE<=EMi) // Check that antiNuEnergy is higher than ThreshE
333 {
334 lastE=0.;
335 lastSig=0.;
336 return 0.;
337 }
338 if(lastE<EMa) // Linear fit is made explicitly to fix the last bin for the randomization
339 {
340 G4int chk=1;
341 G4int ran=mL/2;
342 G4int sep=ran; // as a result = an index of the left edge of the interval
343 while(ran>=2)
344 {
345 G4int newran=ran/2;
346 if(lastE<=lastEN[sep]) sep-=newran;
347 else sep+=newran;
348 ran=newran;
349 chk=chk+chk;
350 }
351 if(chk+chk!=mL) G4cerr<<"*Warn*G4NuMuNuclearCS::CalcCS:Table! mL="<<mL<<G4endl;
352 G4double lowE=lastEN[sep];
353 G4double highE=lastEN[sep+1];
354 G4double lowTX=lastTX[sep];
355 if(lastE<lowE||sep>=mL||lastE>highE)
356 G4cerr<<"*Warn*G4NuMuNuclearCS::CalcCS:Bin! "<<lowE<<" < "<<lastE<<" < "<<highE
357 <<", sep="<<sep<<", mL="<<mL<<G4endl;
358 lastSig=lastE*(lastE-lowE)*(lastTX[sep+1]-lowTX)/(highE-lowE)+lowTX; // Recover *E
359 if(!onlyCS) // Skip the differential cross-section parameters
360 {
361 G4double lowQE=lastQE[sep];
362 lastQEL=(lastE-lowE)*(lastQE[sep+1]-lowQE)/(highE-lowE)+lowQE;
363#ifdef pdebug
364 G4cout<<"G4NuMuNuclearCS::CalcCS: T="<<lastSig<<",Q="<<lastQEL<<",E="<<lastE<<G4endl;
365#endif
366 }
367 }
368 else
369 {
370 lastSig=lastTX[mL]; // @@ No extrapolation, just a const, while it looks shrinking...
371 lastQEL=lastQE[mL];
372 }
373 if(lastQEL<0.) lastQEL = 0.;
374 if(lastSig<0.) lastSig = 0.;
375 // The cross-sections are expected to be in mb
376 lastSig*=mb38;
377 if(!onlyCS) lastQEL*=mb38;
378 return lastSig;
379}
380
381// Calculate the cros-section functions
382// ****************************************************************************************
383// *** This tables are the same for all lepto-nuclear reactions, only mass is different ***
384// ***@@ IT'S REASONABLE TO MAKE ADDiTIONAL VIRTUAL CLASS FOR LEPTO-NUCLEAR WITH THIS@@ ***
385// ****************************************************************************************
386G4int G4QANuMuNuclearCrossSection::GetFunctions (G4int z, G4int n,
387 G4double* t, G4double* q, G4double* e)
388{
389 static const G4double mN=.931494043;// Nucleon mass (inside nucleus, AtomicMassUnit, GeV)
390 static const G4double dmN=mN+mN; // Doubled nucleon mass (2*AtomicMassUnit, GeV)
391 static const G4double mmu=.105658369; // Mass of a muon in GeV
392 static const G4double mmu2=mmu*mmu; // Squared mass of a muon in GeV^2
393 static const G4double thresh=mmu+mmu2/dmN; // Universal threshold in GeV
394 static const G4int nE=65; // !! If change this, change it in GetCrossSection() (*.cc) !!
395 static const G4double nuEn[nE]={thresh,
396 .112039,.116079,.120416,.125076,.130090,.135494,.141324,.147626,.154445,.161838,
397 .169864,.178594,.188105,.198485,.209836,.222272,.235923,.250941,.267497,.285789,
398 .306045,.328530,.353552,.381466,.412689,.447710,.487101,.531538,.581820,.638893,
399 .703886,.778147,.863293,.961275,1.07445,1.20567,1.35843,1.53701,1.74667,1.99390,
400 2.28679,2.63542,3.05245,3.55386,4.15990,4.89644,5.79665,6.90336,8.27224,9.97606,
401 12.1106,14.8029,18.2223,22.5968,28.2351,35.5587,45.1481,57.8086,74.6682,97.3201,
402 128.036,170.085,228.220,309.420};
403 static const G4double TOTX[nE]={0.,
404 .077498,.247583,.329691,.386384,.429087,.462699,.489899,.512316,.530996,.546614,
405 .559616,.570292,.578840,.585395,.590053,.593083,.594197,.593614,.591396,.587611,
406 .582335,.575653,.567667,.558490,.548417,.537270,.525352,.512825,.499857,.486620,
407 .473283,.460014,.446970,.434294,.422116,.410656,.399782,.389665,.380349,.371860,
408 .364207,.357387,.351388,.346192,.341778,.338122,.335198,.332980,.331439,.330544,
409 .330263,.330558,.331391,.332718,.334494,.336667,.339182,.341697,.344470,.348125,
410 .351322,.354481,.357507,.359239};
411 static const G4double QELX[nE]={0.,
412 .008683,.028739,.039700,.048327,.055820,.062693,.069235,.075631,.082010,.088463,
413 .095059,.101851,.108883,.116192,.123814,.131826,.140185,.148962,.158197,.167933,
414 .178221,.189119,.200700,.213045,.226326,.240454,.255277,.270612,.286388,.302608,
415 .319318,.336582,.354468,.373031,.392427,.412445,.433146,.454448,.476222,.498289,
416 .520430,.542558,.564130,.585003,.604928,.623680,.641266,.657255,.671704,.684586,
417 .696111,.706028,.714553,.721951,.728085,.733182,.737348,.740958,.743716,.746059,
418 .747806,.749129,.750331,.751100};
419
420 // --------------------------------
421 G4int first=0;
422 if(z<0.)
423 {
424 first=1;
425 z=-z;
426 }
427 if(z<1 || z>92) // neutron & plutonium are forbidden
428 {
429 G4cout<<"**G4QANuMuNuclearCrossSection::GetFunctions:Z="<<z<<".No CS returned"<<G4endl;
430 return -1;
431 }
432 for(G4int k=0; k<nE; k++)
433 {
434 G4double a=n+z;
435 G4double za=z+a;
436 G4double dz=z+z;
437 G4double da=a+a;
438 G4double ta=da+a;
439 if(first) e[k]=nuEn[k]; // Energy of neutrino E (first bin k=0 can be modified)
440 t[k]=TOTX[k]*nuEn[k]*(za+za)/ta+QELX[k]*(dz+dz-da)/ta; // TotalCrossSection
441 q[k]=QELX[k]*dz/a; // QuasiElasticCrossSection
442 }
443 return first;
444}
445
446// Randomize Q2 from neutrino to the scattered muon when the scattering is quasi-elastic
448{
449 static const G4double mmu=.105658369;// Mass of muon in GeV
450 static const G4double mmu2=mmu*mmu; // Squared Mass of muon in GeV^2
451 static const double hmmu2=mmu2/2; // .5*m_mu^2 in GeV^2
452 static const double MN=.931494043; // Nucleon mass (inside nucleus, atomicMassUnit,GeV)
453 static const double MN2=MN*MN; // M_N^2 in GeV^2
454 static const G4double power=-3.5; // direct power for the magic variable
455 static const G4double pconv=1./power;// conversion power for the magic variable
456 static const G4int nQ2=101; // #Of point in the Q2l table (in GeV^2)
457 static const G4int lQ2=nQ2-1; // index of the last in the Q2l table
458 static const G4int bQ2=lQ2-1; // index of the before last in the Q2 ltable
459 // Reversed table
460 static const G4double Xl[nQ2]={5.20224e-16,
461 .006125,.0137008,.0218166,.0302652,.0389497,.0478144,.0568228,.0659497,.0751768,.0844898,
462 .093878, .103332, .112844, .122410, .132023, .141680, .151376, .161109, .170875, .180672,
463 .190499, .200352, .210230, .220131, .230055, .239999, .249963, .259945, .269944, .279960,
464 .289992, .300039, .310099, .320173, .330260, .340359, .350470, .360592, .370724, .380867,
465 .391019, .401181, .411352, .421531, .431719, .441915, .452118, .462329, .472547, .482771,
466 .493003, .503240, .513484, .523734, .533989, .544250, .554517, .564788, .575065, .585346,
467 .595632, .605923, .616218, .626517, .636820, .647127, .657438, .667753, .678072, .688394,
468 .698719, .709048, .719380, .729715, .740053, .750394, .760738, .771085, .781434, .791786,
469 .802140, .812497, .822857, .833219, .843582, .853949, .864317, .874687, .885060, .895434,
470 .905810, .916188, .926568, .936950, .947333, .957719, .968105, .978493, .988883, .999275};
471 // Direct table
472 static const G4double Xmax=Xl[lQ2];
473 static const G4double Xmin=Xl[0];
474 static const G4double dX=(Xmax-Xmin)/lQ2; // step in X(Q2, GeV^2)
475 static const G4double inl[nQ2]={0,
476 1.52225, 2.77846, 3.96651, 5.11612, 6.23990, 7.34467, 8.43466, 9.51272, 10.5809, 11.6406,
477 12.6932, 13.7394, 14.7801, 15.8158, 16.8471, 17.8743, 18.8979, 19.9181, 20.9353, 21.9496,
478 22.9614, 23.9707, 24.9777, 25.9826, 26.9855, 27.9866, 28.9860, 29.9837, 30.9798, 31.9745,
479 32.9678, 33.9598, 34.9505, 35.9400, 36.9284, 37.9158, 38.9021, 39.8874, 40.8718, 41.8553,
480 42.8379, 43.8197, 44.8007, 45.7810, 46.7605, 47.7393, 48.7174, 49.6950, 50.6718, 51.6481,
481 52.6238, 53.5990, 54.5736, 55.5476, 56.5212, 57.4943, 58.4670, 59.4391, 60.4109, 61.3822,
482 62.3531, 63.3236, 64.2937, 65.2635, 66.2329, 67.2019, 68.1707, 69.1390, 70.1071, 71.0748,
483 72.0423, 73.0095, 73.9763, 74.9429, 75.9093, 76.8754, 77.8412, 78.8068, 79.7721, 80.7373,
484 81.7022, 82.6668, 83.6313, 84.5956, 85.5596, 86.5235, 87.4872, 88.4507, 89.4140, 90.3771,
485 91.3401, 92.3029, 93.2656, 94.2281, 95.1904, 96.1526, 97.1147, 98.0766, 99.0384, 100.000};
486 G4double Enu=lastE; // Get energy of the last calculated cross-section
487 G4double dEnu=Enu+Enu; // doubled energy of nu/anu
488 G4double Enu2=Enu*Enu; // squared energy of nu/anu
489 G4double ME=Enu*MN; // M*E
490 G4double dME=ME+ME; // 2*M*E
491 G4double dEMN=(dEnu+MN)*ME;
492 G4double MEm=ME-hmmu2;
493 G4double sqE=Enu*std::sqrt(MEm*MEm-mmu2*MN2);
494 G4double E2M=MN*Enu2-(Enu+MN)*hmmu2;
495 G4double ymax=(E2M+sqE)/dEMN;
496 G4double ymin=(E2M-sqE)/dEMN;
497 G4double rmin=1.-ymin;
498 G4double rhm2E=hmmu2/Enu2;
499 G4double Q2mi=(Enu2+Enu2)*(rmin-rhm2E-std::sqrt(rmin*rmin-rhm2E-rhm2E)); // Q2_min(E_nu)
500 G4double Q2ma=dME*ymax; // Q2_max(E_nu)
501 G4double Xma=std::pow((1.+Q2mi),power); // X_max(E_nu)
502 G4double Xmi=std::pow((1.+Q2ma),power); // X_min(E_nu)
503 // Find the integral values integ(Xmi) & integ(Xma) using the direct table
504 G4double rXi=(Xmi-Xmin)/dX;
505 G4int iXi=static_cast<int>(rXi);
506 if(iXi<0) iXi=0;
507 if(iXi>bQ2) iXi=bQ2;
508 G4double dXi=rXi-iXi;
509 G4double bnti=inl[iXi];
510 G4double inti=bnti+dXi*(inl[iXi+1]-bnti);
511 //
512 G4double rXa=(Xma-Xmin)/dX;
513 G4int iXa=static_cast<int>(rXa);
514 if(iXa<0) iXa=0;
515 if(iXa>bQ2) iXa=bQ2;
516 G4double dXa=rXa-iXa;
517 G4double bnta=inl[iXa];
518 G4double inta=bnta+dXa*(inl[iXa+1]-bnta);
519 // *** Find X using the reversed table ***
520 G4double intx=inti+(inta-inti)*G4UniformRand();
521 G4int intc=static_cast<int>(intx);
522 if(intc<0) intc=0;
523 if(intc>bQ2) intc=bQ2; // If it is more than max, then the BAD extrapolation
524 G4double dint=intx-intc;
525 G4double mX=Xl[intc];
526 G4double X=mX+dint*(Xl[intc+1]-mX);
527 G4double Q2=std::pow(X,pconv)-1.;
528 return Q2*GeV*GeV;
529}
530
531// Randomize Q2 from neutrino to the scattered muon when the scattering is not quasiElastic
533{
534 static const double mpi=.13957018; // charged pi meson mass in GeV
535 static const G4double mmu=.105658369; // Mass of muon in GeV
536 static const G4double mmu2=mmu*mmu; // Squared Mass of muon in GeV^2
537 static const double hmmu2=mmu2/2; // .5*m_mu^2 in GeV^2
538 static const double MN=.931494043; // Nucleon mass (inside nucleus,atomicMassUnit,GeV)
539 static const double MN2=MN*MN; // M_N^2 in GeV^2
540 static const double dMN=MN+MN; // 2*M_N in GeV
541 static const double mcV=(dMN+mpi)*mpi;// constant of W>M+mc cut for Quasi-Elastic
542 static const G4int power=7; // direct power for the magic variable
543 static const G4double pconv=1./power; // conversion power for the magic variable
544 static const G4int nX=21; // #Of point in the Xl table (in GeV^2)
545 static const G4int lX=nX-1; // index of the last in the Xl table
546 static const G4int bX=lX-1; // @@ index of the before last in the Xl table
547 static const G4int nE=20; // #Of point in the El table (in GeV^2)
548 static const G4int bE=nE-1; // index of the last in the El table
549 static const G4int pE=bE-1; // index of the before last in the El table
550 // Reversed table
551 static const G4double X0[nX]={5.21412e-05,
552 .437860, .681908, .891529, 1.08434, 1.26751, 1.44494, 1.61915, 1.79198, 1.96493, 2.13937,
553 2.31664, 2.49816, 2.68559, 2.88097, 3.08705, 3.30774, 3.54917, 3.82233, 4.15131, 4.62182};
554 static const G4double X1[nX]={.00102591,
555 1.00443, 1.55828, 2.03126, 2.46406, 2.87311, 3.26723, 3.65199, 4.03134, 4.40835, 4.78561,
556 5.16549, 5.55031, 5.94252, 6.34484, 6.76049, 7.19349, 7.64917, 8.13502, 8.66246, 9.25086};
557 static const G4double X2[nX]={.0120304,
558 2.59903, 3.98637, 5.15131, 6.20159, 7.18024, 8.10986, 9.00426, 9.87265, 10.7217, 11.5564,
559 12.3808, 13.1983, 14.0116, 14.8234, 15.6359, 16.4515, 17.2723, 18.1006, 18.9386, 19.7892};
560 static const G4double X3[nX]={.060124,
561 5.73857, 8.62595, 10.9849, 13.0644, 14.9636, 16.7340, 18.4066, 20.0019, 21.5342, 23.0142,
562 24.4497, 25.8471, 27.2114, 28.5467, 29.8564, 31.1434, 32.4102, 33.6589, 34.8912, 36.1095};
563 static const G4double X4[nX]={.0992363,
564 8.23746, 12.1036, 15.1740, 17.8231, 20.1992, 22.3792, 24.4092, 26.3198, 28.1320, 29.8615,
565 31.5200, 33.1169, 34.6594, 36.1536, 37.6044, 39.0160, 40.3920, 41.7353, 43.0485, 44.3354};
566 static const G4double X5[nX]={.0561127,
567 7.33661, 10.5694, 13.0778, 15.2061, 17.0893, 18.7973, 20.3717, 21.8400, 23.2211, 24.5291,
568 25.7745, 26.9655, 28.1087, 29.2094, 30.2721, 31.3003, 32.2972, 33.2656, 34.2076, 35.1265};
569 static const G4double X6[nX]={.0145859,
570 4.81774, 6.83565, 8.37399, 9.66291, 10.7920, 11.8075, 12.7366, 13.5975, 14.4025, 15.1608,
571 15.8791, 16.5628, 17.2162, 17.8427, 18.4451, 19.0259, 19.5869, 20.1300, 20.6566, 21.1706};
572 static const G4double X7[nX]={.00241155,
573 2.87095, 4.02492, 4.89243, 5.61207, 6.23747, 6.79613, 7.30433, 7.77270, 8.20858, 8.61732,
574 9.00296, 9.36863, 9.71682, 10.0495, 10.3684, 10.6749, 10.9701, 11.2550, 11.5306, 11.7982};
575 static const G4double X8[nX]={.000316863,
576 1.76189, 2.44632, 2.95477, 3.37292, 3.73378, 4.05420, 4.34415, 4.61009, 4.85651, 5.08666,
577 5.30299, 5.50738, 5.70134, 5.88609, 6.06262, 6.23178, 6.39425, 6.55065, 6.70149, 6.84742};
578 static const G4double X9[nX]={3.73544e-05,
579 1.17106, 1.61289, 1.93763, 2.20259, 2.42976, 2.63034, 2.81094, 2.97582, 3.12796, 3.26949,
580 3.40202, 3.52680, 3.64482, 3.75687, 3.86360, 3.96557, 4.06323, 4.15697, 4.24713, 4.33413};
581 static const G4double XA[nX]={4.19131e-06,
582 .849573, 1.16208, 1.38955, 1.57379, 1.73079, 1.86867, 1.99221, 2.10451, 2.20770, 2.30332,
583 2.39252, 2.47622, 2.55511, 2.62977, 2.70066, 2.76818, 2.83265, 2.89437, 2.95355, 3.01051};
584 static const G4double XB[nX]={4.59981e-07,
585 .666131, .905836, 1.07880, 1.21796, 1.33587, 1.43890, 1.53080, 1.61399, 1.69011, 1.76040,
586 1.82573, 1.88682, 1.94421, 1.99834, 2.04959, 2.09824, 2.14457, 2.18878, 2.23107, 2.27162};
587 static const G4double XC[nX]={4.99861e-08,
588 .556280, .752730, .893387, 1.00587, 1.10070, 1.18317, 1.25643, 1.32247, 1.38269, 1.43809,
589 1.48941, 1.53724, 1.58203, 1.62416, 1.66391, 1.70155, 1.73728, 1.77128, 1.80371, 1.83473};
590 static const G4double XD[nX]={5.40832e-09,
591 .488069, .657650, .778236, .874148, .954621, 1.02432, 1.08599, 1.14138, 1.19172, 1.23787,
592 1.28049, 1.32008, 1.35705, 1.39172, 1.42434, 1.45514, 1.48429, 1.51197, 1.53829, 1.56339};
593 static const G4double XE[nX]={5.84029e-10,
594 .445057, .597434, .705099, .790298, .861468, .922865, .976982, 1.02542, 1.06930, 1.10939,
595 1.14630, 1.18050, 1.21233, 1.24208, 1.27001, 1.29630, 1.32113, 1.34462, 1.36691, 1.38812};
596 static const G4double XF[nX]={6.30137e-11,
597 .418735, .560003, .659168, .737230, .802138, .857898, .906854, .950515, .989915, 1.02580,
598 1.05873, 1.08913, 1.11734, 1.14364, 1.16824, 1.19133, 1.21306, 1.23358, 1.25298, 1.27139};
599 static const G4double XG[nX]={6.79627e-12,
600 .405286, .539651, .633227, .706417, .766929, .818642, .863824, .903931, .939963, .972639,
601 1.00250, 1.02995, 1.05532, 1.07887, 1.10082, 1.12134, 1.14058, 1.15867, 1.17572, 1.19183};
602 static const G4double XH[nX]={7.32882e-13,
603 .404391, .535199, .625259, .695036, .752243, .800752, .842823, .879906, .912994, .942802,
604 .969862, .994583, 1.01729, 1.03823, 1.05763, 1.07566, 1.09246, 1.10816, 1.12286, 1.13667};
605 static const G4double XI[nX]={7.90251e-14,
606 .418084, .548382, .636489, .703728, .758106, .803630, .842633, .876608, .906576, .933269,
607 .957233, .978886, .998556, 1.01651, 1.03295, 1.04807, 1.06201, 1.07489, 1.08683, 1.09792};
608 static const G4double XJ[nX]={8.52083e-15,
609 .447299, .579635, .666780, .731788, .783268, .825512, .861013, .891356, .917626, .940597,
610 .960842, .978802, .994820, 1.00917, 1.02208, 1.03373, 1.04427, 1.05383, 1.06253, 1.07046};
611 // Direct table
612 static const G4double Xmin[nE]={X0[0],X1[0],X2[0],X3[0],X4[0],X5[0],X6[0],X7[0],X8[0],
613 X9[0],XA[0],XB[0],XC[0],XD[0],XE[0],XF[0],XG[0],XH[0],XI[0],XJ[0]};
614 static const G4double dX[nE]={
615 (X0[lX]-X0[0])/lX, (X1[lX]-X1[0])/lX, (X2[lX]-X2[0])/lX, (X3[lX]-X3[0])/lX,
616 (X4[lX]-X4[0])/lX, (X5[lX]-X5[0])/lX, (X6[lX]-X6[0])/lX, (X7[lX]-X7[0])/lX,
617 (X8[lX]-X8[0])/lX, (X9[lX]-X9[0])/lX, (XA[lX]-XA[0])/lX, (XB[lX]-XB[0])/lX,
618 (XC[lX]-XC[0])/lX, (XD[lX]-XD[0])/lX, (XE[lX]-XE[0])/lX, (XF[lX]-XF[0])/lX,
619 (XG[lX]-XG[0])/lX, (XH[lX]-XH[0])/lX, (XI[lX]-XI[0])/lX, (XJ[lX]-XJ[0])/lX};
620 static const G4double* Xl[nE]=
621 {X0,X1,X2,X3,X4,X5,X6,X7,X8,X9,XA,XB,XC,XD,XE,XF,XG,XH,XI,XJ};
622 static const G4double I0[nX]={0,
623 .354631, 1.08972, 2.05138, 3.16564, 4.38343, 5.66828, 6.99127, 8.32858, 9.65998, 10.9680,
624 12.2371, 13.4536, 14.6050, 15.6802, 16.6686, 17.5609, 18.3482, 19.0221, 19.5752, 20.0000};
625 static const G4double I1[nX]={0,
626 .281625, .877354, 1.67084, 2.60566, 3.64420, 4.75838, 5.92589, 7.12829, 8.34989, 9.57708,
627 10.7978, 12.0014, 13.1781, 14.3190, 15.4162, 16.4620, 17.4496, 18.3724, 19.2245, 20.0000};
628 static const G4double I2[nX]={0,
629 .201909, .642991, 1.24946, 1.98463, 2.82370, 3.74802, 4.74263, 5.79509, 6.89474, 8.03228,
630 9.19947, 10.3889, 11.5938, 12.8082, 14.0262, 15.2427, 16.4527, 17.6518, 18.8356, 20.0000};
631 static const G4double I3[nX]={0,
632 .140937, .461189, .920216, 1.49706, 2.17728, 2.94985, 3.80580, 4.73758, 5.73867, 6.80331,
633 7.92637, 9.10316, 10.3294, 11.6013, 12.9150, 14.2672, 15.6548, 17.0746, 18.5239, 20.0000};
634 static const G4double I4[nX]={0,
635 .099161, .337358, .694560, 1.16037, 1.72761, 2.39078, 3.14540, 3.98768, 4.91433, 5.92245,
636 7.00942, 8.17287, 9.41060, 10.7206, 12.1010, 13.5500, 15.0659, 16.6472, 18.2924, 20.0000};
637 static const G4double I5[nX]={0,
638 .071131, .255084, .543312, .932025, 1.41892, 2.00243, 2.68144, 3.45512, 4.32283, 5.28411,
639 6.33859, 7.48602, 8.72621, 10.0590, 11.4844, 13.0023, 14.6128, 16.3158, 18.1115, 20.0000};
640 static const G4double I6[nX]={0,
641 .053692, .202354, .443946, .778765, 1.20774, 1.73208, 2.35319, 3.07256, 3.89177, 4.81249,
642 5.83641, 6.96528, 8.20092, 9.54516, 10.9999, 12.5670, 14.2486, 16.0466, 17.9630, 20.0000};
643 static const G4double I7[nX]={0,
644 .043065, .168099, .376879, .672273, 1.05738, 1.53543, 2.10973, 2.78364, 3.56065, 4.44429,
645 5.43819, 6.54610, 7.77186, 9.11940, 10.5928, 12.1963, 13.9342, 15.8110, 17.8313, 20.0000};
646 static const G4double I8[nX]={0,
647 .036051, .143997, .327877, .592202, .941572, 1.38068, 1.91433, 2.54746, 3.28517, 4.13277,
648 5.09574, 6.17984, 7.39106, 8.73568, 10.2203, 11.8519, 13.6377, 15.5854, 17.7033, 20.0000};
649 static const G4double I9[nX]={0,
650 .030977, .125727, .289605, .528146, .846967, 1.25183, 1.74871, 2.34384, 3.04376, 3.85535,
651 4.78594, 5.84329, 7.03567, 8.37194, 9.86163, 11.5150, 13.3430, 15.3576, 17.5719, 20.0000};
652 static const G4double IA[nX]={0,
653 .027129, .111420, .258935, .475812, .768320, 1.14297, 1.60661, 2.16648, 2.83034, 3.60650,
654 4.50394, 5.53238, 6.70244, 8.02569, 9.51488, 11.1841, 13.0488, 15.1264, 17.4362, 20.0000};
655 static const G4double IB[nX]={0,
656 .024170, .100153, .234345, .433198, .703363, 1.05184, 1.48607, 2.01409, 2.64459, 3.38708,
657 4.25198, 5.25084, 6.39647, 7.70319, 9.18708, 10.8663, 12.7617, 14.8968, 17.2990, 20.0000};
658 static const G4double IC[nX]={0,
659 .021877, .091263, .214670, .398677, .650133, .976322, 1.38510, 1.88504, 2.48555, 3.19709,
660 4.03129, 5.00127, 6.12184, 7.40989, 8.88482, 10.5690, 12.4888, 14.6748, 17.1638, 20.0000};
661 static const G4double ID[nX]={0,
662 .020062, .084127, .198702, .370384, .606100, .913288, 1.30006, 1.77535, 2.34912, 3.03253,
663 3.83822, 4.78063, 5.87634, 7.14459, 8.60791, 10.2929, 12.2315, 14.4621, 17.0320, 20.0000};
664 static const G4double IE[nX]={0,
665 .018547, .078104, .185102, .346090, .567998, .858331, 1.22535, 1.67824, 2.22735, 2.88443,
666 3.66294, 4.57845, 5.64911, 6.89637, 8.34578, 10.0282, 11.9812, 14.2519, 16.8993, 20.0000};
667 static const G4double IF[nX]={0,
668 .017143, .072466, .172271, .323007, .531545, .805393, 1.15288, 1.58338, 2.10754, 2.73758,
669 3.48769, 4.37450, 5.41770, 6.64092, 8.07288, 9.74894, 11.7135, 14.0232, 16.7522, 20.0000};
670 static const G4double IG[nX]={0,
671 .015618, .066285, .158094, .297316, .490692, .745653, 1.07053, 1.47479, 1.96931, 2.56677,
672 3.28205, 4.13289, 5.14068, 6.33158, 7.73808, 9.40133, 11.3745, 13.7279, 16.5577, 20.0000};
673 static const G4double IH[nX]={0,
674 .013702, .058434, .139923, .264115, .437466, .667179, .961433, 1.32965, 1.78283, 2.33399,
675 2.99871, 3.79596, 4.74916, 5.88771, 7.24937, 8.88367, 10.8576, 13.2646, 16.2417, 20.0000};
676 static const G4double II[nX]={0,
677 .011264, .048311, .116235, .220381, .366634, .561656, .813132, 1.13008, 1.52322, 2.00554,
678 2.59296, 3.30542, 4.16834, 5.21490, 6.48964, 8.05434, 9.99835, 12.4580, 15.6567, 20.0000};
679 static const G4double IJ[nX]={0,
680 .008628, .037206, .089928, .171242, .286114, .440251, .640343, .894382, 1.21208, 1.60544,
681 2.08962, 2.68414, 3.41486, 4.31700, 5.44048, 6.85936, 8.69067, 11.1358, 14.5885, 20.0000};
682 static const G4double* Il[nE]=
683 {I0,I1,I2,I3,I4,I5,I6,I7,I8,I9,IA,IB,IC,ID,IE,IF,IG,IH,II,IJ};
684 static const G4double lE[nE]={
685-1.98842,-1.58049,-1.17256,-.764638,-.356711, .051215, .459141, .867068, 1.27499, 1.68292,
686 2.09085, 2.49877, 2.90670, 3.31463, 3.72255, 4.13048, 4.53840, 4.94633, 5.35426, 5.76218};
687 static const G4double lEmi=lE[0];
688 static const G4double lEma=lE[nE-1];
689 static const G4double dlE=(lEma-lEmi)/bE;
690 //***************************************************************************************
691 G4double Enu=lastE; // Get energy of the last calculated cross-section
692 G4double lEn=std::log(Enu); // log(E) for interpolation
693 G4double rE=(lEn-lEmi)/dlE; // Position of the energy
694 G4int fE=static_cast<int>(rE); // Left bin for interpolation
695 if(fE<0) fE=0;
696 if(fE>pE)fE=pE;
697 G4int sE=fE+1; // Right bin for interpolation
698 G4double dE=rE-fE; // relative log shift from the left bin
699 G4double dEnu=Enu+Enu; // doubled energy of nu/anu
700 G4double Enu2=Enu*Enu; // squared energy of nu/anu
701 G4double Emu=Enu-mmu; // Free Energy of neutrino/anti-neutrino
702 G4double ME=Enu*MN; // M*E
703 G4double dME=ME+ME; // 2*M*E
704 G4double dEMN=(dEnu+MN)*ME;
705 G4double MEm=ME-hmmu2;
706 G4double sqE=Enu*std::sqrt(MEm*MEm-mmu2*MN2);
707 G4double E2M=MN*Enu2-(Enu+MN)*hmmu2;
708 G4double ymax=(E2M+sqE)/dEMN;
709 G4double ymin=(E2M-sqE)/dEMN;
710 G4double rmin=1.-ymin;
711 G4double rhm2E=hmmu2/Enu2;
712 G4double Q2mi=(Enu2+Enu2)*(rmin-rhm2E-std::sqrt(rmin*rmin-rhm2E-rhm2E)); // Q2_min(E_nu)
713 G4double Q2ma=dME*ymax; // Q2_max(E_nu)
714 G4double Q2nq=Emu*dMN-mcV;
715 if(Q2ma>Q2nq) Q2ma=Q2nq; // Correction for Non Quasi Elastic
716 // --- now r_min=Q2mi/Q2ma and r_max=1.; when r is randomized -> Q2=r*Q2ma ---
717 G4double Rmi=Q2mi/Q2ma;
718 G4double shift=.875/(1.+.2977/Enu/Enu)/std::pow(Enu,.78);
719 // --- E-interpolation must be done in a log scale ---
720 G4double Xmi=std::pow((shift-Rmi),power);// X_min(E_nu)
721 G4double Xma=std::pow((shift-1.),power); // X_max(E_nu)
722 // Find the integral values integ(Xmi) & integ(Xma) using the direct table
723 G4double idX=dX[fE]+dE*(dX[sE]-dX[fE]); // interpolated X step
724 G4double iXmi=Xmin[fE]+dE*(Xmin[sE]-Xmin[fE]); // interpolated X minimum
725 G4double rXi=(Xmi-iXmi)/idX;
726 G4int iXi=static_cast<int>(rXi);
727 if(iXi<0) iXi=0;
728 if(iXi>bX) iXi=bX;
729 G4double dXi=rXi-iXi;
730 G4double bntil=Il[fE][iXi];
731 G4double intil=bntil+dXi*(Il[fE][iXi+1]-bntil);
732 G4double bntir=Il[sE][iXi];
733 G4double intir=bntir+dXi*(Il[sE][iXi+1]-bntir);
734 G4double inti=intil+dE*(intir-intil);// interpolated begin of the integral
735 //
736 G4double rXa=(Xma-iXmi)/idX;
737 G4int iXa=static_cast<int>(rXa);
738 if(iXa<0) iXa=0;
739 if(iXa>bX) iXa=bX;
740 G4double dXa=rXa-iXa;
741 G4double bntal=Il[fE][iXa];
742 G4double intal=bntal+dXa*(Il[fE][iXa+1]-bntal);
743 G4double bntar=Il[sE][iXa];
744 G4double intar=bntar+dXa*(Il[sE][iXa+1]-bntar);
745 G4double inta=intal+dE*(intar-intal);// interpolated end of the integral
746 //
747 // *** Find X using the reversed table ***
748 G4double intx=inti+(inta-inti)*G4UniformRand();
749 G4int intc=static_cast<int>(intx);
750 if(intc<0) intc=0;
751 if(intc>bX) intc=bX;
752 G4double dint=intx-intc;
753 G4double mXl=Xl[fE][intc];
754 G4double Xlb=mXl+dint*(Xl[fE][intc+1]-mXl);
755 G4double mXr=Xl[sE][intc];
756 G4double Xrb=mXr+dint*(Xl[sE][intc+1]-mXr);
757 G4double X=Xlb+dE*(Xrb-Xlb); // interpolated X value
758 G4double R=shift-std::pow(X,pconv);
759 G4double Q2=R*Q2ma;
760 return Q2*GeV*GeV;
761}
762
763// It returns a fraction of the direct interaction of the neutrino with quark-partons
765{
766 G4double f=Q2/4.62;
767 G4double ff=f*f;
768 G4double r=ff*ff;
769 G4double s_value=std::pow((1.+.6/Q2),(-1.-(1.+r)/(12.5+r/.3)));
770 //@@ It is the same for nu/anu, but for nu it is a bit less, and for anu a bit more (par)
771 return 1.-s_value*(1.-s_value/2);
772}
773
774// #of quark-partons in the nonperturbative phase space is the same for neut and anti-neut
776{
777 return 3.+.3581*std::log(1.+Q2/.04); // a#of partons in the nonperturbative phase space
778}
779
780// This class can provide only virtual exchange pi- (a substitute for W- boson)
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cerr
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
G4double CalculateCrossSection(G4bool CS, G4int F, G4int I, G4int PDG, G4int Z, G4int N, G4double Momentum)
G4double ThresholdEnergy(G4int Z, G4int N, G4int PDG=-14)
virtual G4double GetCrossSection(G4bool fCS, G4double pMom, G4int tgZ, G4int tgN, G4int pPDG=0)
static G4VQCrossSection * GetPointer()
static G4double tolerance