Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ChipsPionMinusInelasticXS.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02
28// GEANT4 tag $Name: not supported by cvs2svn $
29//
30//
31// G4 Physics class: G4ChipsPionMinusInelasticXS for gamma+A cross sections
32// Created: M.V. Kossov, CERN/ITEP(Moscow), 20-Dec-03
33// The last update: M.V. Kossov, CERN/ITEP (Moscow) 15-Feb-04
34//
35// -------------------------------------------------------------------------------------
36// Short description: Cross-sections extracted (by W.Pokorski) from the CHIPS package for
37// pion interactions. Original author: M. Kossov
38// -------------------------------------------------------------------------------------
39//
40
43#include "G4SystemOfUnits.hh"
44#include "G4DynamicParticle.hh"
46#include "G4PionMinus.hh"
47
48// factory
50//
52
54{
55 // Initialization of the
56 lastLEN=0; // Pointer to lastArray of LowEn CS
57 lastHEN=0; // Pointer to lastArray of HighEn CS
58 lastN=0; // The last N of calculated nucleus
59 lastZ=0; // The last Z of calculated nucleus
60 lastP=0.; // Last used cross section Momentum
61 lastTH=0.; // Last threshold momentum
62 lastCS=0.; // Last value of the Cross Section
63 lastI=0; // The last position in the DAMDB
64 LEN = new std::vector<G4double*>;
65 HEN = new std::vector<G4double*>;
66}
67
69{
70 G4int lens=LEN->size();
71 for(G4int i=0; i<lens; ++i) delete[] (*LEN)[i];
72 delete LEN;
73 G4int hens=HEN->size();
74 for(G4int i=0; i<hens; ++i) delete[] (*HEN)[i];
75 delete HEN;
76}
77
78
80 const G4Element*,
81 const G4Material*)
82{
83 G4ParticleDefinition* particle = Pt->GetDefinition();
84 if (particle == G4PionMinus::PionMinus() ) return true;
85 return false;
86}
87
88// The main member function giving the collision cross section (P is in IU, CS is in mb)
89// Make pMom in independent units ! (Now it is MeV)
91 const G4Isotope*,
92 const G4Element*,
93 const G4Material*)
94{
95 G4double pMom=Pt->GetTotalMomentum();
96 G4int tgN = A - tgZ;
97
98 return GetChipsCrossSection(pMom, tgZ, tgN, -211);
99}
100
102{
103 static G4int j; // A#0f Z/N-records already tested in AMDB
104 static std::vector <G4int> colN; // Vector of N for calculated nuclei (isotops)
105 static std::vector <G4int> colZ; // Vector of Z for calculated nuclei (isotops)
106 static std::vector <G4double> colP; // Vector of last momenta for the reaction
107 static std::vector <G4double> colTH; // Vector of energy thresholds for the reaction
108 static std::vector <G4double> colCS; // Vector of last cross sections for the reaction
109 // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
110
111 G4bool in=false; // By default the isotope must be found in the AMDB
112 if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope
113 {
114 in = false; // By default the isotope haven't be found in AMDB
115 lastP = 0.; // New momentum history (nothing to compare with)
116 lastN = tgN; // The last N of the calculated nucleus
117 lastZ = tgZ; // The last Z of the calculated nucleus
118 lastI = colN.size(); // Size of the Associative Memory DB in the heap
119 j = 0; // A#0f records found in DB for this projectile
120 if(lastI) for(G4int i=0; i<lastI; i++) // AMDB exists, try to find the (Z,N) isotope
121 {
122 if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB
123 {
124 lastI=i; // Remember the index for future fast/last use
125 lastTH =colTH[i]; // The last THreshold (A-dependent)
126 if(pMom<=lastTH)
127 {
128 return 0.; // Energy is below the Threshold value
129 }
130 lastP =colP [i]; // Last Momentum (A-dependent)
131 lastCS =colCS[i]; // Last CrossSect (A-dependent)
132 in = true; // This is the case when the isotop is found in DB
133 // Momentum pMom is in IU ! @@ Units
134 lastCS=CalculateCrossSection(-1,j,-211,lastZ,lastN,pMom); // read & update
135 if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros)
136 {
137 lastCS=0.;
138 lastTH=pMom;
139 }
140 break; // Go out of the LOOP
141 }
142 j++; // Increment a#0f records found in DB
143 }
144 if(!in) // This isotope has not been calculated previously
145 {
146 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
147 lastCS=CalculateCrossSection(0,j,-211,lastZ,lastN,pMom); //calculate & create
148 //if(lastCS>0.) // It means that the AMBD was initialized
149 //{
150
151 lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
152 colN.push_back(tgN);
153 colZ.push_back(tgZ);
154 colP.push_back(pMom);
155 colTH.push_back(lastTH);
156 colCS.push_back(lastCS);
157 //} // M.K. Presence of H1 with high threshold breaks the syncronization
158 return lastCS*millibarn;
159 } // End of creation of the new set of parameters
160 else
161 {
162 colP[lastI]=pMom;
163 colCS[lastI]=lastCS;
164 }
165 } // End of parameters udate
166 else if(pMom<=lastTH)
167 {
168 return 0.; // Momentum is below the Threshold Value -> CS=0
169 }
170 else // It is the last used -> use the current tables
171 {
172 lastCS=CalculateCrossSection(1,j,-211,lastZ,lastN,pMom); // Only read and UpdateDB
173 lastP=pMom;
174 }
175 return lastCS*millibarn;
176}
177
178// The main member function giving the gamma-A cross section (E in GeV, CS in mb)
179G4double G4ChipsPionMinusInelasticXS::CalculateCrossSection(G4int F, G4int I,
180 G4int, G4int targZ, G4int targN, G4double Momentum)
181{
182 static const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold
183 static const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold
184 static const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c
185 static const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c
186 static const G4int nL=105; // A#of LEN points in E (step 10 MeV/c)
187 static const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety
188 static const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV
189 static const G4int nH=224; // A#of HEN points in lnE
190 static const G4double milP=std::log(Pmin);// Low logarithm energy for the HEN part
191 static const G4double malP=std::log(Pmax);// High logarithm energy (each 2.75 percent)
192 static const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part
193 static const G4double milPG=std::log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c
194 G4double sigma=0.;
195 if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!!
196 //G4double A=targN+targZ; // A of the target
197 if(F<=0) // This isotope was not the last used isotop
198 {
199 if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE
200 {
201 G4int sync=LEN->size();
202 if(sync<=I) G4cerr<<"*!*G4ChipsPiMinusNuclCS::CalcCrosSect:Sync="<<sync<<"<="<<I<<G4endl;
203 lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections
204 lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections
205 }
206 else // This isotope wasn't calculated before => CREATE
207 {
208 lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections
209 lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections
210 // --- Instead of making a separate function ---
211 G4double P=THmiG; // Table threshold in GeV/c
212 for(G4int k=0; k<nL; k++)
213 {
214 lastLEN[k] = CrossSectionLin(targZ, targN, P);
215 P+=dPG;
216 }
217 G4double lP=milPG;
218 for(G4int n=0; n<nH; n++)
219 {
220 lastHEN[n] = CrossSectionLog(targZ, targN, lP);
221 lP+=dlP;
222 }
223 // --- End of possible separate function
224 // *** The synchronization check ***
225 G4int sync=LEN->size();
226 if(sync!=I)
227 {
228 G4cerr<<"***G4ChipsPiMinusNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ
229 <<", N="<<targN<<", F="<<F<<G4endl;
230 //G4Exception("G4PiMinusNuclearCS::CalculateCS:","39",FatalException,"DBoverflow");
231 }
232 LEN->push_back(lastLEN); // remember the Low Energy Table
233 HEN->push_back(lastHEN); // remember the High Energy Table
234 } // End of creation of the new set of parameters
235 } // End of parameters udate
236 // =---------------------= NOW the Magic Formula =---------------------------=
237 if (Momentum<lastTH) return 0.; // It must be already checked in the interface class
238 else if (Momentum<Pmin) // High Energy region
239 {
240 sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN);
241 }
242 else if (Momentum<Pmax) // High Energy region
243 {
244 G4double lP=std::log(Momentum);
245 sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN);
246 }
247 else // UHE region (calculation, not frequent)
248 {
249 G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c
250 sigma=CrossSectionFormula(targZ, targN, P, std::log(P));
251 }
252 if(sigma<0.) return 0.;
253 return sigma;
254}
255
256// Calculation formula for piMinus-nuclear inelastic cross-section (mb) (P in GeV/c)
257G4double G4ChipsPionMinusInelasticXS::CrossSectionLin(G4int tZ, G4int tN, G4double P)
258{
259 G4double lP=std::log(P);
260 return CrossSectionFormula(tZ, tN, P, lP);
261}
262
263// Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
264G4double G4ChipsPionMinusInelasticXS::CrossSectionLog(G4int tZ, G4int tN, G4double lP)
265{
266 G4double P=std::exp(lP);
267 return CrossSectionFormula(tZ, tN, P, lP);
268}
269// Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
270G4double G4ChipsPionMinusInelasticXS::CrossSectionFormula(G4int tZ, G4int tN,
271 G4double P, G4double lP)
272{
273 G4double sigma=0.;
274 if(tZ==1 && !tN) // PiMin-Proton interaction from G4QuasiElRatios
275 {
276 G4double lr=lP+1.27; // From G4QuasiFreeRatios.cc Uzhi
277 G4double LE=1.53/(lr*lr+.0676); // From G4QuasiFreeRatios.cc Uzhi
278 G4double ld=lP-3.5;
279 G4double ld2=ld*ld;
280 G4double p2=P*P;
281 G4double p4=p2*p2;
282 G4double sp=std::sqrt(P);
283 G4double lm=lP+.36;
284 G4double md=lm*lm+.04;
285 G4double lh=lP-.017;
286 G4double hd=lh*lh+.0025;
287 G4double El=(.0557*ld2+2.4+7./sp)/(1.+.7/p4);
288 G4double To=(.3*ld2+22.3+12./sp)/(1.+.4/p4);
289 sigma=(To-El)+.4/md+.01/hd;
290 sigma+=LE*2; // Uzhi
291 }
292 else if(tZ==1 && tN==1) // pimp_tot
293 {
294 G4double p2=P*P;
295 G4double d=lP-2.7;
296 G4double f=lP+1.25;
297 G4double gg=lP-.017;
298 sigma=(.55*d*d+38.+23./std::sqrt(P))/(1.+.3/p2/p2)+18./(f*f+.1089)+.02/(gg*gg+.0025);
299 }
300 else if(tZ<97 && tN<152) // General solution
301 {
302 G4double d=lP-4.2;
303 G4double p2=P*P;
304 G4double p4=p2*p2;
305 G4double a=tN+tZ; // A of the target
306 G4double al=std::log(a);
307 G4double sa=std::sqrt(a);
308 G4double ssa=std::sqrt(sa);
309 G4double a2=a*a;
310 G4double c=41.*std::exp(al*.68)*(1.+44./a2)/(1.+8./a)/(1.+200./a2/a2);
311 G4double f=120*sa/(1.+24./a/ssa);
312 G4double gg=-1.32-al*.043;
313 G4double u=lP-gg;
314 G4double h=al*(.388-.046*al);
315 sigma=(c+d*d)/(1.+.17/p4)+f/(u*u+h*h);
316 }
317 else
318 {
319 G4cerr<<"-Warning-G4ChipsPiMinusNuclearCroSect::CSForm:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
320 sigma=0.;
321 }
322 if(sigma<0.) return 0.;
323 return sigma;
324}
325
326G4double G4ChipsPionMinusInelasticXS::EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double* Y)
327{
328 if(DX<=0. || N<2)
329 {
330 G4cerr<<"***G4ChipsPionMinusInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl;
331 return Y[0];
332 }
333
334 G4int N2=N-2;
335 G4double d=(X-X0)/DX;
336 G4int j=static_cast<int>(d);
337 if (j<0) j=0;
338 else if(j>N2) j=N2;
339 d-=j; // excess
340 G4double yi=Y[j];
341 G4double sigma=yi+(Y[j+1]-yi)*d;
342
343 return sigma;
344}
@ LE
Definition: Evaluator.cc:66
#define G4_DECLARE_XS_FACTORY(cross_section)
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cerr
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
G4ParticleDefinition * GetDefinition() const
G4double GetTotalMomentum() const
static G4PionMinus * PionMinus()
Definition: G4PionMinus.cc:98