Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ChipsPionPlusElasticXS.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29//
30// G4 Physics class: G4ChipsPionPlusElasticXS for pA elastic cross sections
31// Created: M.V. Kossov, CERN/ITEP(Moscow), 21-Jan-10
32// The last update: M.V. Kossov, CERN/ITEP (Moscow) 21-Jan-10
33//
34// -------------------------------------------------------------------------------
35// Short description: Interaction cross-sections for the elastic process.
36// Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
37// -------------------------------------------------------------------------------
38
39
41#include "G4SystemOfUnits.hh"
42#include "G4DynamicParticle.hh"
44#include "G4PionPlus.hh"
45#include "G4Nucleus.hh"
46#include "G4ParticleTable.hh"
47#include "G4NucleiProperties.hh"
48
49// factory
51//
53
54G4ChipsPionPlusElasticXS::G4ChipsPionPlusElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1)
55{
56 lPMin=-8.; // Min tabulated logarithmMomentum(D)
57 lPMax= 8.; // Max tabulated logarithmMomentum(D)
58 dlnP=(lPMax-lPMin)/nLast;// LogStep inTheTable(D)
59 onlyCS=true;// Flag toCalcul OnlyCS(not Si/Bi)(L)
60 lastSIG=0.; // Last calculated cross section (L)
61 lastLP=-10.;// Last log(mom_of IncidentHadron)(L)
62 lastTM=0.; // Last t_maximum (L)
63 theSS=0.; // TheLastSqSlope of 1st difr.Max(L)
64 theS1=0.; // TheLastMantissa of 1st difr.Max(L)
65 theB1=0.; // TheLastSlope of 1st difruct.Max(L)
66 theS2=0.; // TheLastMantissa of 2nd difr.Max(L)
67 theB2=0.; // TheLastSlope of 2nd difruct.Max(L)
68 theS3=0.; // TheLastMantissa of 3d difr. Max(L)
69 theB3=0.; // TheLastSlope of 3d difruct. Max(L)
70 theS4=0.; // TheLastMantissa of 4th difr.Max(L)
71 theB4=0.; // TheLastSlope of 4th difruct.Max(L)
72 lastTZ=0; // Last atomic number of the target
73 lastTN=0; // Last # of neutrons in the target
74 lastPIN=0.; // Last initialized max momentum
75 lastCST=0; // Elastic cross-section table
76 lastPAR=0; // ParametersForFunctionalCalculation
77 lastSST=0; // E-dep of SqaredSlope of 1st difMax
78 lastS1T=0; // E-dep of mantissa of 1st dif.Max
79 lastB1T=0; // E-dep of the slope of 1st difMax
80 lastS2T=0; // E-dep of mantissa of 2nd difrMax
81 lastB2T=0; // E-dep of the slope of 2nd difMax
82 lastS3T=0; // E-dep of mantissa of 3d difr.Max
83 lastB3T=0; // E-dep of the slope of 3d difrMax
84 lastS4T=0; // E-dep of mantissa of 4th difrMax
85 lastB4T=0; // E-dep of the slope of 4th difMax
86 lastN=0; // The last N of calculated nucleus
87 lastZ=0; // The last Z of calculated nucleus
88 lastP=0.; // LastUsed in cross section Momentum
89 lastTH=0.; // Last threshold momentum
90 lastCS=0.; // Last value of the Cross Section
91 lastI=0; // The last position in the DAMDB
92}
93
95{
96 std::vector<G4double*>::iterator pos;
97 for (pos=CST.begin(); pos<CST.end(); pos++)
98 { delete [] *pos; }
99 CST.clear();
100 for (pos=PAR.begin(); pos<PAR.end(); pos++)
101 { delete [] *pos; }
102 PAR.clear();
103 for (pos=SST.begin(); pos<SST.end(); pos++)
104 { delete [] *pos; }
105 SST.clear();
106 for (pos=S1T.begin(); pos<S1T.end(); pos++)
107 { delete [] *pos; }
108 S1T.clear();
109 for (pos=B1T.begin(); pos<B1T.end(); pos++)
110 { delete [] *pos; }
111 B1T.clear();
112 for (pos=S2T.begin(); pos<S2T.end(); pos++)
113 { delete [] *pos; }
114 S2T.clear();
115 for (pos=B2T.begin(); pos<B2T.end(); pos++)
116 { delete [] *pos; }
117 B2T.clear();
118 for (pos=S3T.begin(); pos<S3T.end(); pos++)
119 { delete [] *pos; }
120 S3T.clear();
121 for (pos=B3T.begin(); pos<B3T.end(); pos++)
122 { delete [] *pos; }
123 B3T.clear();
124 for (pos=S4T.begin(); pos<S4T.end(); pos++)
125 { delete [] *pos; }
126 S4T.clear();
127 for (pos=B4T.begin(); pos<B4T.end(); pos++)
128 { delete [] *pos; }
129 B4T.clear();
130}
131
133 const G4Element*,
134 const G4Material*)
135{
136 G4ParticleDefinition* particle = Pt->GetDefinition();
137 if (particle == G4PionPlus::PionPlus() ) return true;
138 return false;
139}
140
141// The main member function giving the collision cross section (P is in IU, CS is in mb)
142// Make pMom in independent units ! (Now it is MeV)
144 const G4Isotope*,
145 const G4Element*,
146 const G4Material*)
147
148{
149 G4double pMom=Pt->GetTotalMomentum();
150 G4int tgN = A - tgZ;
151
152 return GetChipsCrossSection(pMom, tgZ, tgN, 211);
153}
154
156{
157 static std::vector <G4int> colN; // Vector of N for calculated nuclei (isotops)
158 static std::vector <G4int> colZ; // Vector of Z for calculated nuclei (isotops)
159 static std::vector <G4double> colP; // Vector of last momenta for the reaction
160 static std::vector <G4double> colTH; // Vector of energy thresholds for the reaction
161 static std::vector <G4double> colCS; // Vector of last cross sections for the reaction
162 // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
163
164 G4double pEn=pMom;
165 G4bool fCS = false;
166 onlyCS=fCS;
167
168 G4bool in=false; // By default the isotope must be found in the AMDB
169 lastP = 0.; // New momentum history (nothing to compare with)
170 lastN = tgN; // The last N of the calculated nucleus
171 lastZ = tgZ; // The last Z of the calculated nucleus
172 lastI = colN.size(); // Size of the Associative Memory DB in the heap
173 if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB
174 { // The nucleus with projPDG is found in AMDB
175 if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
176 {
177 lastI=i;
178 lastTH =colTH[i]; // Last THreshold (A-dependent)
179 if(pEn<=lastTH)
180 {
181 return 0.; // Energy is below the Threshold value
182 }
183 lastP =colP [i]; // Last Momentum (A-dependent)
184 lastCS =colCS[i]; // Last CrossSect (A-dependent)
185 // if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
186 if(lastP == pMom) // Do not recalculate
187 {
188 CalculateCrossSection(fCS,-1,i,211,lastZ,lastN,pMom); // Update param's only
189 return lastCS*millibarn; // Use theLastCS
190 }
191 in = true; // This is the case when the isotop is found in DB
192 // Momentum pMom is in IU ! @@ Units
193 lastCS=CalculateCrossSection(fCS,-1,i,211,lastZ,lastN,pMom); // read & update
194 if(lastCS<=0. && pEn>lastTH) // Correct the threshold
195 {
196 lastTH=pEn;
197 }
198 break; // Go out of the LOOP with found lastI
199 }
200 } // End of attampt to find the nucleus in DB
201 if(!in) // This nucleus has not been calculated previously
202 {
203 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
204 lastCS=CalculateCrossSection(fCS,0,lastI,211,lastZ,lastN,pMom);//calculate&create
205 if(lastCS<=0.)
206 {
207 lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
208 if(pEn>lastTH)
209 {
210 lastTH=pEn;
211 }
212 }
213 colN.push_back(tgN);
214 colZ.push_back(tgZ);
215 colP.push_back(pMom);
216 colTH.push_back(lastTH);
217 colCS.push_back(lastCS);
218 return lastCS*millibarn;
219 } // End of creation of the new set of parameters
220 else
221 {
222 colP[lastI]=pMom;
223 colCS[lastI]=lastCS;
224 }
225 return lastCS*millibarn;
226}
227
228// Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
229// F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
230G4double G4ChipsPionPlusElasticXS::CalculateCrossSection(G4bool CS, G4int F, G4int I,
231 G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
232{
233 // *** Begin of Associative Memory DB for acceleration of the cross section calculations
234 static std::vector <G4double> PIN; // Vector of max initialized log(P) in the table
235 // *** End of Static Definitions (Associative Memory Data Base) ***
236 G4double pMom=pIU/GeV; // All calculations are in GeV
237 onlyCS=CS; // Flag to calculate only CS (not Si/Bi)
238 lastLP=std::log(pMom); // Make a logarithm of the momentum for calculation
239 if(F) // This isotope was found in AMDB =>RETRIEVE/UPDATE
240 {
241 if(F<0) // the AMDB must be loded
242 {
243 lastPIN = PIN[I]; // Max log(P) initialised for this table set
244 lastPAR = PAR[I]; // Pointer to the parameter set
245 lastCST = CST[I]; // Pointer to the total sross-section table
246 lastSST = SST[I]; // Pointer to the first squared slope
247 lastS1T = S1T[I]; // Pointer to the first mantissa
248 lastB1T = B1T[I]; // Pointer to the first slope
249 lastS2T = S2T[I]; // Pointer to the second mantissa
250 lastB2T = B2T[I]; // Pointer to the second slope
251 lastS3T = S3T[I]; // Pointer to the third mantissa
252 lastB3T = B3T[I]; // Pointer to the rhird slope
253 lastS4T = S4T[I]; // Pointer to the 4-th mantissa
254 lastB4T = B4T[I]; // Pointer to the 4-th slope
255 }
256 if(lastLP>lastPIN && lastLP<lPMax)
257 {
258 lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
259 PIN[I]=lastPIN; // Remember the new P-Limit of the tables
260 }
261 }
262 else // This isotope wasn't initialized => CREATE
263 {
264 lastPAR = new G4double[nPoints]; // Allocate memory for parameters of CS function
265 lastPAR[nLast]=0; // Initialization for VALGRIND
266 lastCST = new G4double[nPoints]; // Allocate memory for Tabulated CS function
267 lastSST = new G4double[nPoints]; // Allocate memory for Tabulated first sqaredSlope
268 lastS1T = new G4double[nPoints]; // Allocate memory for Tabulated first mantissa
269 lastB1T = new G4double[nPoints]; // Allocate memory for Tabulated first slope
270 lastS2T = new G4double[nPoints]; // Allocate memory for Tabulated second mantissa
271 lastB2T = new G4double[nPoints]; // Allocate memory for Tabulated second slope
272 lastS3T = new G4double[nPoints]; // Allocate memory for Tabulated third mantissa
273 lastB3T = new G4double[nPoints]; // Allocate memory for Tabulated third slope
274 lastS4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th mantissa
275 lastB4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th slope
276 lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
277 PIN.push_back(lastPIN); // Fill parameters of CS function to AMDB
278 PAR.push_back(lastPAR); // Fill parameters of CS function to AMDB
279 CST.push_back(lastCST); // Fill Tabulated CS function to AMDB
280 SST.push_back(lastSST); // Fill Tabulated first sq.slope to AMDB
281 S1T.push_back(lastS1T); // Fill Tabulated first mantissa to AMDB
282 B1T.push_back(lastB1T); // Fill Tabulated first slope to AMDB
283 S2T.push_back(lastS2T); // Fill Tabulated second mantissa to AMDB
284 B2T.push_back(lastB2T); // Fill Tabulated second slope to AMDB
285 S3T.push_back(lastS3T); // Fill Tabulated third mantissa to AMDB
286 B3T.push_back(lastB3T); // Fill Tabulated third slope to AMDB
287 S4T.push_back(lastS4T); // Fill Tabulated 4-th mantissa to AMDB
288 B4T.push_back(lastB4T); // Fill Tabulated 4-th slope to AMDB
289 } // End of creation/update of the new set of parameters and tables
290 // =-----------= NOW Update (if necessary) and Calculate the Cross Section =----------=
291 if(lastLP>lastPIN && lastLP<lPMax)
292 {
293 lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
294 }
295 if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
296 if(lastLP>lPMin && lastLP<=lastPIN) // Linear fit is made using precalculated tables
297 {
298 if(lastLP==lastPIN)
299 {
300 G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
301 G4int blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
302 if(blast<0 || blast>=nLast) G4cout<<"G4QEleastCS::CCS:b="<<blast<<","<<nLast<<G4endl;
303 lastSIG = lastCST[blast];
304 if(!onlyCS) // Skip the differential cross-section parameters
305 {
306 theSS = lastSST[blast];
307 theS1 = lastS1T[blast];
308 theB1 = lastB1T[blast];
309 theS2 = lastS2T[blast];
310 theB2 = lastB2T[blast];
311 theS3 = lastS3T[blast];
312 theB3 = lastB3T[blast];
313 theS4 = lastS4T[blast];
314 theB4 = lastB4T[blast];
315 }
316 }
317 else
318 {
319 G4double shift=(lastLP-lPMin)/dlnP; // a shift from the beginning of the table
320 G4int blast=static_cast<int>(shift); // the lower bin number
321 if(blast<0) blast=0;
322 if(blast>=nLast) blast=nLast-1; // low edge of the last bin
323 shift-=blast; // step inside the unit bin
324 G4int lastL=blast+1; // the upper bin number
325 G4double SIGL=lastCST[blast]; // the basic value of the cross-section
326 lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
327 if(!onlyCS) // Skip the differential cross-section parameters
328 {
329 G4double SSTL=lastSST[blast]; // the low bin of the first squared slope
330 theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
331 G4double S1TL=lastS1T[blast]; // the low bin of the first mantissa
332 theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
333 G4double B1TL=lastB1T[blast]; // the low bin of the first slope
334 theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
335 G4double S2TL=lastS2T[blast]; // the low bin of the second mantissa
336 theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
337 G4double B2TL=lastB2T[blast]; // the low bin of the second slope
338 theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
339 G4double S3TL=lastS3T[blast]; // the low bin of the third mantissa
340 theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
341 G4double B3TL=lastB3T[blast]; // the low bin of the third slope
342 theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
343 G4double S4TL=lastS4T[blast]; // the low bin of the 4-th mantissa
344 theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
345 G4double B4TL=lastB4T[blast]; // the low bin of the 4-th slope
346 theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
347 }
348 }
349 }
350 else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
351 if(lastSIG<0.) lastSIG = 0.; // @@ a Warning print can be added
352 return lastSIG;
353}
354
355// It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
356G4double G4ChipsPionPlusElasticXS::GetPTables(G4double LP, G4double ILP, G4int PDG,
357 G4int tgZ, G4int tgN)
358{
359 // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
360 static const G4double pwd=2727;
361 const G4int n_pippel=35; // #of parameters for pip_p-elastic (<nPoints=128)
362 // -0- -1- -2- -3- -4- -5- -6- -7--8--9--10-11-12--13-
363 G4double pipp_el[n_pippel]={1.27,13.,.0676,3.5,.32,.0576,.0557,2.4,6.,3.,.7,5.,74.,3.,
364 3.4,.2,.17,.001,8.,.055,3.64,5.e-5,4000.,1500.,.46,1.2e6,
365 3.5e6,5.e-5,1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
366 // -14--15--16--17--18- -19--20- -21- -22- -23- -24- -25-
367 // -26- -27- -28- -29- -30- -31- -32- -33- -34-
368 if(PDG == 211)
369 {
370 // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
371 //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
372 //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
373 // par(0) par(7) par(1) par(2) par(4) par(5) par(6)
374 //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
375 // par(8) par(9) par(10) par(11) par(12)par(13) par(14)
376 // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
377 // par(15) par(16) par(17) par(18) par(19) par(20) par(21) par(22) par(23)
378 // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
379 // par(24) par(25) par(26) par(27) par(28) par(29) par(30) par(31)
380 //
381 if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
382 {
383 if ( tgZ == 1 && tgN == 0 )
384 {
385 for (G4int ip=0; ip<n_pippel; ip++) lastPAR[ip]=pipp_el[ip]; // PiPlus+P
386 }
387 else
388 {
389 G4double a=tgZ+tgN;
390 G4double sa=std::sqrt(a);
391 G4double ssa=std::sqrt(sa);
392 G4double asa=a*sa;
393 G4double a2=a*a;
394 G4double a3=a2*a;
395 G4double a4=a3*a;
396 G4double a5=a4*a;
397 G4double a6=a4*a2;
398 G4double a7=a6*a;
399 G4double a8=a7*a;
400 G4double a9=a8*a;
401 G4double a10=a5*a5;
402 G4double a12=a6*a6;
403 G4double a14=a7*a7;
404 G4double a16=a8*a8;
405 G4double a17=a16*a;
406 //G4double a20=a16*a4;
407 G4double a32=a16*a16;
408 // Reaction cross-section parameters (pel=peh_fit.f)
409 lastPAR[0]=(.95*sa+2.E5/a16)/(1.+17/a); // p1
410 lastPAR[1]=a/(1./4.4+1./a); // p2
411 lastPAR[2]=.22/std::pow(a,.33); // p3
412 lastPAR[3]=.5*a/(1.+3./a+1800./a8); // p4
413 lastPAR[4]=3.E-4*std::pow(a,.32)/(1.+14./a2); // p5
414 lastPAR[5]=0.; // p6 not used
415 lastPAR[6]=(.55+.001*a2)/(1.+4.E-4*a2); // p7
416 lastPAR[7]=(.0002/asa+4.E-9*a)/(1.+9./a4); // p8
417 lastPAR[8]=0.; // p9 not used
418 // @@ the differential cross-section is parameterized separately for A>6 & A<7
419 if(a<6.5)
420 {
421 G4double a28=a16*a12;
422 // The main pre-exponent (pel_sg)
423 lastPAR[ 9]=4000*a; // p1
424 lastPAR[10]=1.2e7*a8+380*a17; // p2
425 lastPAR[11]=.7/(1.+4.e-12*a16); // p3
426 lastPAR[12]=2.5/a8/(a4+1.e-16*a32); // p4
427 lastPAR[13]=.28*a; // p5
428 lastPAR[14]=1.2*a2+2.3; // p6
429 lastPAR[15]=3.8/a; // p7
430 // The main slope (pel_sl)
431 lastPAR[16]=.01/(1.+.0024*a5); // p1
432 lastPAR[17]=.2*a; // p2
433 lastPAR[18]=9.e-7/(1.+.035*a5); // p3
434 lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a); // p4
435 // The main quadratic (pel_sh)
436 lastPAR[20]=2.25*a3; // p1
437 lastPAR[21]=18.; // p2
438 lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7); // p3
439 lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a); // p4
440 // The 1st max pre-exponent (pel_qq)
441 lastPAR[24]=1.e5/(a8+2.5e12/a16); // p1
442 lastPAR[25]=8.e7/(a12+1.e-27*a28*a28); // p2
443 lastPAR[26]=.0006*a3; // p3
444 // The 1st max slope (pel_qs)
445 lastPAR[27]=10.+4.e-8*a12*a; // p1
446 lastPAR[28]=.114; // p2
447 lastPAR[29]=.003; // p3
448 lastPAR[30]=2.e-23; // p4
449 // The effective pre-exponent (pel_ss)
450 lastPAR[31]=1./(1.+.0001*a8); // p1
451 lastPAR[32]=1.5e-4/(1.+5.e-6*a12); // p2
452 lastPAR[33]=.03; // p3
453 // The effective slope (pel_sb)
454 lastPAR[34]=a/2; // p1
455 lastPAR[35]=2.e-7*a4; // p2
456 lastPAR[36]=4.; // p3
457 lastPAR[37]=64./a3; // p4
458 // The gloria pre-exponent (pel_us)
459 lastPAR[38]=1.e8*std::exp(.32*asa); // p1
460 lastPAR[39]=20.*std::exp(.45*asa); // p2
461 lastPAR[40]=7.e3+2.4e6/a5; // p3
462 lastPAR[41]=2.5e5*std::exp(.085*a3); // p4
463 lastPAR[42]=2.5*a; // p5
464 // The gloria slope (pel_ub)
465 lastPAR[43]=920.+.03*a8*a3; // p1
466 lastPAR[44]=93.+.0023*a12; // p2
467 }
468 else
469 {
470 G4double p1a10=2.2e-28*a10;
471 G4double r4a16=6.e14/a16;
472 G4double s4a16=r4a16*r4a16;
473 // a24
474 // a36
475 // The main pre-exponent (peh_sg)
476 lastPAR[ 9]=4.5*std::pow(a,1.15); // p1
477 lastPAR[10]=.06*std::pow(a,.6); // p2
478 lastPAR[11]=.6*a/(1.+2.e15/a16); // p3
479 lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32); // p4
480 lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5); // p5
481 lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12); // p6
482 // The main slope (peh_sl)
483 lastPAR[15]=400./a12+2.e-22*a9; // p1
484 lastPAR[16]=1.e-32*a12/(1.+5.e22/a14); // p2
485 lastPAR[17]=1000./a2+9.5*sa*ssa; // p3
486 lastPAR[18]=4.e-6*a*asa+1.e11/a16; // p4
487 lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16); // p5
488 lastPAR[20]=9.+100./a; // p6
489 // The main quadratic (peh_sh)
490 lastPAR[21]=.002*a3+3.e7/a6; // p1
491 lastPAR[22]=7.e-15*a4*asa; // p2
492 lastPAR[23]=9000./a4; // p3
493 // The 1st max pre-exponent (peh_qq)
494 lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4); // p1
495 lastPAR[25]=1.e-5*a2+2.e14/a16; // p2
496 lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12); // p3
497 lastPAR[27]=.016*asa/(1.+5.e16/a16); // p4
498 // The 1st max slope (peh_qs)
499 lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1
500 lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11); // p2
501 lastPAR[30]=11.*a3/(1.+7.e23/a16/a8); // p3
502 lastPAR[31]=100./asa; // p4
503 // The 2nd max pre-exponent (peh_ss)
504 lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4); // p1
505 lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); // p2
506 lastPAR[34]=1.3+3.e5/a4; // p3
507 lastPAR[35]=500./(a2+50.)+3; // p4
508 lastPAR[36]=1.e-9/a+s4a16*s4a16; // p5
509 // The 2nd max slope (peh_sb)
510 lastPAR[37]=.4*asa+3.e-9*a6; // p1
511 lastPAR[38]=.0005*a5; // p2
512 lastPAR[39]=.002*a5; // p3
513 lastPAR[40]=10.; // p4
514 // The effective pre-exponent (peh_us)
515 lastPAR[41]=.05+.005*a; // p1
516 lastPAR[42]=7.e-8/sa; // p2
517 lastPAR[43]=.8*sa; // p3
518 lastPAR[44]=.02*sa; // p4
519 lastPAR[45]=1.e8/a3; // p5
520 lastPAR[46]=3.e32/(a32+1.e32); // p6
521 // The effective slope (peh_ub)
522 lastPAR[47]=24.; // p1
523 lastPAR[48]=20./sa; // p2
524 lastPAR[49]=7.e3*a/(sa+1.); // p3
525 lastPAR[50]=900.*sa/(1.+500./a3); // p4
526 }
527 // Parameter for lowEnergyNeutrons
528 lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
529 }
530 lastPAR[nLast]=pwd;
531 // and initialize the zero element of the table
532 G4double lp=lPMin; // ln(momentum)
533 G4bool memCS=onlyCS; // ??
534 onlyCS=false;
535 lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
536 onlyCS=memCS;
537 lastSST[0]=theSS;
538 lastS1T[0]=theS1;
539 lastB1T[0]=theB1;
540 lastS2T[0]=theS2;
541 lastB2T[0]=theB2;
542 lastS3T[0]=theS3;
543 lastB3T[0]=theB3;
544 lastS4T[0]=theS4;
545 lastB4T[0]=theB4;
546 }
547 if(LP>ILP)
548 {
549 G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
550 if(ini<0) ini=0;
551 if(ini<nPoints)
552 {
553 G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
554 if(fin>=nPoints) fin=nLast; // Limit of the tabular initialization
555 if(fin>=ini)
556 {
557 G4double lp=0.;
558 for(G4int ip=ini; ip<=fin; ip++) // Calculate tabular CS,S1,B1,S2,B2,S3,B3
559 {
560 lp=lPMin+ip*dlnP; // ln(momentum)
561 G4bool memCS=onlyCS;
562 onlyCS=false;
563 lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
564 onlyCS=memCS;
565 lastSST[ip]=theSS;
566 lastS1T[ip]=theS1;
567 lastB1T[ip]=theB1;
568 lastS2T[ip]=theS2;
569 lastB2T[ip]=theB2;
570 lastS3T[ip]=theS3;
571 lastB3T[ip]=theB3;
572 lastS4T[ip]=theS4;
573 lastB4T[ip]=theB4;
574 }
575 return lp;
576 }
577 else G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetPTables: PDG="<<PDG
578 <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
579 <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
580 }
581 else G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetPTables: PDG="<<PDG<<", Z="
582 <<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
583 <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
584 }
585 }
586 else
587 {
588 // G4cout<<"*Error*G4ChipsPionPlusElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
589 // <<", N="<<tgN<<", while it is defined only for PDG=211"<<G4endl;
590 // throw G4QException("G4ChipsPionPlusElasticXS::GetPTables:only pipA implemented");
592 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
593 << ", while it is defined only for PDG=211 (pi+)" << G4endl;
594 G4Exception("G4ChipsPionPlusElasticXS::GetPTables()", "HAD_CHPS_0000",
595 FatalException, ed);
596 }
597 return ILP;
598}
599
600// Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
602{
603 static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
604 static const G4double third=1./3.;
605 static const G4double fifth=1./5.;
606 static const G4double sevth=1./7.;
607 if(PDG!= 211)G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetExT:PDG="<<PDG<<G4endl;
608 if(onlyCS)G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetExchanT:onlyCS=1"<<G4endl;
609 if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
610 G4double q2=0.;
611 if(tgZ==1 && tgN==0) // ===> p+p=p+p
612 {
613 G4double E1=lastTM*theB1;
614 G4double R1=(1.-std::exp(-E1));
615 G4double E2=lastTM*theB2;
616 G4double R2=(1.-std::exp(-E2*E2*E2));
617 G4double E3=lastTM*theB3;
618 G4double R3=(1.-std::exp(-E3));
619 G4double I1=R1*theS1/theB1;
620 G4double I2=R2*theS2;
621 G4double I3=R3*theS3;
622 G4double I12=I1+I2;
623 G4double rand=(I12+I3)*G4UniformRand();
624 if (rand<I1 )
625 {
626 G4double ran=R1*G4UniformRand();
627 if(ran>1.) ran=1.;
628 q2=-std::log(1.-ran)/theB1;
629 }
630 else if(rand<I12)
631 {
632 G4double ran=R2*G4UniformRand();
633 if(ran>1.) ran=1.;
634 q2=-std::log(1.-ran);
635 if(q2<0.) q2=0.;
636 q2=std::pow(q2,third)/theB2;
637 }
638 else
639 {
640 G4double ran=R3*G4UniformRand();
641 if(ran>1.) ran=1.;
642 q2=-std::log(1.-ran)/theB3;
643 }
644 }
645 else
646 {
647 G4double a=tgZ+tgN;
648 G4double E1=lastTM*(theB1+lastTM*theSS);
649 G4double R1=(1.-std::exp(-E1));
650 G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
651 G4double tm2=lastTM*lastTM;
652 G4double E2=lastTM*tm2*theB2; // power 3 for lowA, 5 for HighA (1st)
653 if(a>6.5)E2*=tm2; // for heavy nuclei
654 G4double R2=(1.-std::exp(-E2));
655 G4double E3=lastTM*theB3;
656 if(a>6.5)E3*=tm2*tm2*tm2; // power 1 for lowA, 7 (2nd) for HighA
657 G4double R3=(1.-std::exp(-E3));
658 G4double E4=lastTM*theB4;
659 G4double R4=(1.-std::exp(-E4));
660 G4double I1=R1*theS1;
661 G4double I2=R2*theS2;
662 G4double I3=R3*theS3;
663 G4double I4=R4*theS4;
664 G4double I12=I1+I2;
665 G4double I13=I12+I3;
666 G4double rand=(I13+I4)*G4UniformRand();
667 if(rand<I1)
668 {
669 G4double ran=R1*G4UniformRand();
670 if(ran>1.) ran=1.;
671 q2=-std::log(1.-ran)/theB1;
672 if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
673 }
674 else if(rand<I12)
675 {
676 G4double ran=R2*G4UniformRand();
677 if(ran>1.) ran=1.;
678 q2=-std::log(1.-ran)/theB2;
679 if(q2<0.) q2=0.;
680 if(a<6.5) q2=std::pow(q2,third);
681 else q2=std::pow(q2,fifth);
682 }
683 else if(rand<I13)
684 {
685 G4double ran=R3*G4UniformRand();
686 if(ran>1.) ran=1.;
687 q2=-std::log(1.-ran)/theB3;
688 if(q2<0.) q2=0.;
689 if(a>6.5) q2=std::pow(q2,sevth);
690 }
691 else
692 {
693 G4double ran=R4*G4UniformRand();
694 if(ran>1.) ran=1.;
695 q2=-std::log(1.-ran)/theB4;
696 if(a<6.5) q2=lastTM-q2; // u reduced for lightA (starts from 0)
697 }
698 }
699 if(q2<0.) q2=0.;
700 if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElasticCrossSect::GetExchangeT: -t="<<q2<<G4endl;
701 if(q2>lastTM)
702 {
703 q2=lastTM;
704 }
705 return q2*GeVSQ;
706}
707
708// Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
709G4double G4ChipsPionPlusElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
710{
711 static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
712 if(onlyCS)G4cout<<"Warning*G4ChipsPionPlusElasticXS::GetSlope:onlyCS=true"<<G4endl;
713 if(lastLP<-4.3) return 0.; // S-wave for p<14 MeV/c (kinE<.1MeV)
714 if(PDG != 211)
715 {
716 // G4cout<<"*Error*G4ChipsPionPlusElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ
717 // <<", N="<<tgN<<", while it is defined only for PDG=211"<<G4endl;
718 // throw G4QException("G4ChipsPionPlusElasticXS::GetSlope: pipA are implemented");
720 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
721 << ", while it is defined only for PDG=211 (pi-)" << G4endl;
722 G4Exception("G4ChipsPionPlusElasticXS::GetSlope()", "HAD_CHPS_000",
723 FatalException, ed);
724 }
725 if(theB1<0.) theB1=0.;
726 if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QElasticCrossSect::Getslope:"<<theB1<<G4endl;
727 return theB1/GeVSQ;
728}
729
730// Returns half max(Q2=-t) in independent units (MeV^2)
731G4double G4ChipsPionPlusElasticXS::GetHMaxT()
732{
733 static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
734 return lastTM*HGeVSQ;
735}
736
737// lastLP is used, so calculating tables, one need to remember and then recover lastLP
738G4double G4ChipsPionPlusElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
739 G4int tgN)
740{
741 if(PDG!= 211)G4cout<<"Warning*G4ChipsPionPlusElasticXS::GetTabV:PDG="<<PDG<<G4endl;
742 if(tgZ<0 || tgZ>92)
743 {
744 G4cout<<"*Warning*G4QPionPlusElCS::GetTabValue:(1-92) No isotopes for Z="<<tgZ<<G4endl;
745 return 0.;
746 }
747 G4int iZ=tgZ-1; // Z index
748 if(iZ<0)
749 {
750 iZ=0; // conversion of the neutron target to the proton target
751 tgZ=1;
752 tgN=0;
753 }
754 G4double p=std::exp(lp); // momentum
755 G4double sp=std::sqrt(p); // sqrt(p)
756 G4double p2=p*p;
757 G4double p3=p2*p;
758 G4double p4=p2*p2;
759 if ( tgZ == 1 && tgN == 0 ) // PiPlus+P
760 {
761 G4double dl2=lp-lastPAR[11];
762 theSS=lastPAR[34];
763 theS1=(lastPAR[12]+lastPAR[13]*dl2*dl2)/(1.+lastPAR[14]/p4/p)+
764 (lastPAR[15]/p2+lastPAR[16]*p)/(p4+lastPAR[17]*sp);
765 theB1=lastPAR[18]*std::pow(p,lastPAR[19])/(1.+lastPAR[20]/p3);
766 theS2=lastPAR[21]+lastPAR[22]/(p4+lastPAR[23]*p);
767 theB2=lastPAR[24]+lastPAR[25]/(p4+lastPAR[26]/sp);
768 theS3=lastPAR[27]+lastPAR[28]/(p4*p4+lastPAR[29]*p2+lastPAR[30]);
769 theB3=lastPAR[31]+lastPAR[32]/(p4+lastPAR[33]);
770 theS4=0.;
771 theB4=0.;
772 // Returns the total elastic pip-p cross-section (to avoid spoiling lastSIG)
773 G4double dl1=lp+lastPAR[0]; // lr
774 G4double lr2=dl1*dl1; // lr2
775 G4double dl3=lp-lastPAR[3]; // ld
776 G4double dl4=lp-lastPAR[4]; // lm
777 return lastPAR[1]/(lr2+lr2*lr2+lastPAR[2])+(lastPAR[6]*dl3*dl3+lastPAR[7]+
778 lastPAR[8]/sp)/(1.+lastPAR[9]/p4)+lastPAR[10]/(dl4*dl4+lastPAR[5]);
779 }
780 else
781 {
782 G4double p5=p4*p;
783 G4double p6=p5*p;
784 G4double p8=p6*p2;
785 G4double p10=p8*p2;
786 G4double p12=p10*p2;
787 G4double p16=p8*p8;
788 //G4double p24=p16*p8;
789 G4double dl=lp-5.;
790 G4double a=tgZ+tgN;
791 G4double pah=std::pow(p,a/2);
792 G4double pa=pah*pah;
793 G4double pa2=pa*pa;
794 if(a<6.5)
795 {
796 theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
797 (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
798 theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
799 theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
800 theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
801 theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
802 theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
803 theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
804 theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+
805 lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42])));
806 theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
807 }
808 else
809 {
810 theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
811 lastPAR[13]/(p5+lastPAR[14]/p16);
812 theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+
813 lastPAR[17]/(1.+lastPAR[18]/p4);
814 theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4);
815 theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
816 theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]);
817 theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
818 lastPAR[33]/(1.+lastPAR[34]/p6);
819 theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
820 theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
821 (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
822 theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
823 }
824 // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
825 // p1 p2 p3
826 return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+lastPAR[2]/p8)+
827 lastPAR[3]/(p4+lastPAR[4]/p3)+lastPAR[6]/(p4+lastPAR[7]/p4);
828 // p4 p5 p7 p8
829 }
830 return 0.;
831} // End of GetTableValues
832
833// Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
834G4double G4ChipsPionPlusElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
835 G4double pP)
836{
837 static const G4double mPi= G4PionPlus::PionPlus()->GetPDGMass()*.001; // MeV to GeV
838 static const G4double mPi2= mPi*mPi;
839 G4double pP2=pP*pP; // squared momentum of the projectile
840 if(tgZ || tgN>-1) // ---> pipA
841 {
842 G4double mt=G4ParticleTable::GetParticleTable()->FindIon(tgZ,tgZ+tgN,0,tgZ)->GetPDGMass()*.001; // Target mass in GeV
843 G4double dmt=mt+mt;
844 G4double mds=dmt*std::sqrt(pP2+mPi2)+mPi2+mt*mt; // Mondelstam mds
845 return dmt*dmt*pP2/mds;
846 }
847 else
848 {
850 ed << "PDG = " << PDG << ", Z = " << tgZ << ",N = " << tgN
851 << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
852 G4Exception("G4ChipsPionPlusElasticXS::GetQ2max()", "HAD_CHPS_0000",
853 FatalException, ed);
854 return 0;
855 }
856}
#define G4_DECLARE_XS_FACTORY(cross_section)
@ FatalException
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
G4double GetExchangeT(G4int tZ, G4int tN, G4int pPDG)
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
G4ParticleDefinition * GetDefinition() const
G4double GetTotalMomentum() const
G4ParticleDefinition * FindIon(G4int atomicNumber, G4int atomicMass, G4double excitationEnergy)
static G4ParticleTable * GetParticleTable()
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
std::ostringstream G4ExceptionDescription
Definition: globals.hh:76