Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4AdjointIonIonisationModel Class Reference

#include <G4AdjointIonIonisationModel.hh>

+ Inheritance diagram for G4AdjointIonIonisationModel:

Public Member Functions

 G4AdjointIonIonisationModel ()
 
virtual ~G4AdjointIonIonisationModel ()
 
virtual void SampleSecondaries (const G4Track &aTrack, G4bool IsScatProjToProjCase, G4ParticleChange *fParticleChange)
 
virtual G4double DiffCrossSectionPerAtomPrimToSecond (G4double kinEnergyProj, G4double kinEnergyProd, G4double Z, G4double A=0.)
 
virtual void CorrectPostStepWeight (G4ParticleChange *fParticleChange, G4double old_weight, G4double adjointPrimKinEnergy, G4double projectileKinEnergy, G4bool IsScatProjToProjCase)
 
virtual G4double GetSecondAdjEnergyMaxForScatProjToProjCase (G4double PrimAdjEnergy)
 
virtual G4double GetSecondAdjEnergyMinForScatProjToProjCase (G4double PrimAdjEnergy, G4double Tcut=0)
 
virtual G4double GetSecondAdjEnergyMaxForProdToProjCase (G4double PrimAdjEnergy)
 
virtual G4double GetSecondAdjEnergyMinForProdToProjCase (G4double PrimAdjEnergy)
 
void SetUseOnlyBragg (G4bool aBool)
 
void SetIon (G4ParticleDefinition *adj_ion, G4ParticleDefinition *fwd_ion)
 
- Public Member Functions inherited from G4VEmAdjointModel
 G4VEmAdjointModel (const G4String &nam)
 
virtual ~G4VEmAdjointModel ()
 
virtual void SampleSecondaries (const G4Track &aTrack, G4bool IsScatProjToProjCase, G4ParticleChange *fParticleChange)=0
 
virtual G4double AdjointCrossSection (const G4MaterialCutsCouple *aCouple, G4double primEnergy, G4bool IsScatProjToProjCase)
 
virtual G4double GetAdjointCrossSection (const G4MaterialCutsCouple *aCouple, G4double primEnergy, G4bool IsScatProjToProjCase)
 
virtual G4double DiffCrossSectionPerAtomPrimToSecond (G4double kinEnergyProj, G4double kinEnergyProd, G4double Z, G4double A=0.)
 
virtual G4double DiffCrossSectionPerAtomPrimToScatPrim (G4double kinEnergyProj, G4double kinEnergyScatProj, G4double Z, G4double A=0.)
 
virtual G4double DiffCrossSectionPerVolumePrimToSecond (const G4Material *aMaterial, G4double kinEnergyProj, G4double kinEnergyProd)
 
virtual G4double DiffCrossSectionPerVolumePrimToScatPrim (const G4Material *aMaterial, G4double kinEnergyProj, G4double kinEnergyScatProj)
 
virtual G4double GetSecondAdjEnergyMaxForScatProjToProjCase (G4double PrimAdjEnergy)
 
virtual G4double GetSecondAdjEnergyMinForScatProjToProjCase (G4double PrimAdjEnergy, G4double Tcut=0)
 
virtual G4double GetSecondAdjEnergyMaxForProdToProjCase (G4double PrimAdjEnergy)
 
virtual G4double GetSecondAdjEnergyMinForProdToProjCase (G4double PrimAdjEnergy)
 
void DefineCurrentMaterial (const G4MaterialCutsCouple *couple)
 
std::vector< std::vector< double > * > ComputeAdjointCrossSectionVectorPerAtomForSecond (G4double kinEnergyProd, G4double Z, G4double A=0., G4int nbin_pro_decade=10)
 
std::vector< std::vector< double > * > ComputeAdjointCrossSectionVectorPerAtomForScatProj (G4double kinEnergyProd, G4double Z, G4double A=0., G4int nbin_pro_decade=10)
 
std::vector< std::vector< double > * > ComputeAdjointCrossSectionVectorPerVolumeForSecond (G4Material *aMaterial, G4double kinEnergyProd, G4int nbin_pro_decade=10)
 
std::vector< std::vector< double > * > ComputeAdjointCrossSectionVectorPerVolumeForScatProj (G4Material *aMaterial, G4double kinEnergyProd, G4int nbin_pro_decade=10)
 
void SetCSMatrices (std::vector< G4AdjointCSMatrix * > *Vec1CSMatrix, std::vector< G4AdjointCSMatrix * > *Vec2CSMatrix)
 
G4ParticleDefinitionGetAdjointEquivalentOfDirectPrimaryParticleDefinition ()
 
G4ParticleDefinitionGetAdjointEquivalentOfDirectSecondaryParticleDefinition ()
 
G4double GetHighEnergyLimit ()
 
G4double GetLowEnergyLimit ()
 
void SetHighEnergyLimit (G4double aVal)
 
void SetLowEnergyLimit (G4double aVal)
 
void DefineDirectEMModel (G4VEmModel *aModel)
 
void SetAdjointEquivalentOfDirectPrimaryParticleDefinition (G4ParticleDefinition *aPart)
 
void SetAdjointEquivalentOfDirectSecondaryParticleDefinition (G4ParticleDefinition *aPart)
 
void SetSecondPartOfSameType (G4bool aBool)
 
G4bool GetSecondPartOfSameType ()
 
void SetUseMatrix (G4bool aBool)
 
void SetUseMatrixPerElement (G4bool aBool)
 
void SetUseOnlyOneMatrixForAllElements (G4bool aBool)
 
void SetApplyCutInRange (G4bool aBool)
 
G4bool GetUseMatrix ()
 
G4bool GetUseMatrixPerElement ()
 
G4bool GetUseOnlyOneMatrixForAllElements ()
 
G4bool GetApplyCutInRange ()
 
G4String GetName ()
 
virtual void SetCSBiasingFactor (G4double aVal)
 

Additional Inherited Members

- Protected Member Functions inherited from G4VEmAdjointModel
G4double DiffCrossSectionFunction1 (G4double kinEnergyProj)
 
G4double DiffCrossSectionFunction2 (G4double kinEnergyProj)
 
G4double DiffCrossSectionPerVolumeFunctionForIntegrationOverEkinProj (G4double EkinProd)
 
G4double SampleAdjSecEnergyFromCSMatrix (size_t MatrixIndex, G4double prim_energy, G4bool IsScatProjToProjCase)
 
G4double SampleAdjSecEnergyFromCSMatrix (G4double prim_energy, G4bool IsScatProjToProjCase)
 
void SelectCSMatrix (G4bool IsScatProjToProjCase)
 
virtual G4double SampleAdjSecEnergyFromDiffCrossSectionPerAtom (G4double prim_energy, G4bool IsScatProjToProjCase)
 
virtual void CorrectPostStepWeight (G4ParticleChange *fParticleChange, G4double old_weight, G4double adjointPrimKinEnergy, G4double projectileKinEnergy, G4bool IsScatProjToProjCase)
 
- Protected Attributes inherited from G4VEmAdjointModel
G4VEmModeltheDirectEMModel
 
G4VParticleChangepParticleChange
 
const G4String name
 
G4int ASelectedNucleus
 
G4int ZSelectedNucleus
 
G4MaterialSelectedMaterial
 
G4double kinEnergyProdForIntegration
 
G4double kinEnergyScatProjForIntegration
 
G4double kinEnergyProjForIntegration
 
std::vector< G4AdjointCSMatrix * > * pOnCSMatrixForProdToProjBackwardScattering
 
std::vector< G4AdjointCSMatrix * > * pOnCSMatrixForScatProjToProjBackwardScattering
 
std::vector< G4doubleCS_Vs_ElementForScatProjToProjCase
 
std::vector< G4doubleCS_Vs_ElementForProdToProjCase
 
G4double lastCS
 
G4double lastAdjointCSForScatProjToProjCase
 
G4double lastAdjointCSForProdToProjCase
 
G4ParticleDefinitiontheAdjEquivOfDirectPrimPartDef
 
G4ParticleDefinitiontheAdjEquivOfDirectSecondPartDef
 
G4ParticleDefinitiontheDirectPrimaryPartDef
 
G4bool second_part_of_same_type
 
G4double preStepEnergy
 
G4MaterialcurrentMaterial
 
G4MaterialCutsCouplecurrentCouple
 
size_t currentMaterialIndex
 
size_t currentCoupleIndex
 
G4double currentTcutForDirectPrim
 
G4double currentTcutForDirectSecond
 
G4bool ApplyCutInRange
 
G4double mass_ratio_product
 
G4double mass_ratio_projectile
 
G4double HighEnergyLimit
 
G4double LowEnergyLimit
 
G4double CS_biasing_factor
 
G4bool UseMatrix
 
G4bool UseMatrixPerElement
 
G4bool UseOnlyOneMatrixForAllElements
 
size_t indexOfUsedCrossSectionMatrix
 
size_t model_index
 

Detailed Description

Definition at line 71 of file G4AdjointIonIonisationModel.hh.

Constructor & Destructor Documentation

◆ G4AdjointIonIonisationModel()

G4AdjointIonIonisationModel::G4AdjointIonIonisationModel ( )

Definition at line 47 of file G4AdjointIonIonisationModel.cc.

47 :
48 G4VEmAdjointModel("Adjoint_IonIonisation")
49{
50
51
52 UseMatrix =true;
54 ApplyCutInRange = true;
58 use_only_bragg = false; // for the Ion ionisation using the parametrised table model the cross sections and the sample of secondaries is done
59 // as in the BraggIonModel, Therefore the use of this flag;
60
61 //The direct EM Model is taken has BetheBloch it is only used for the computation
62 // of the differential cross section.
63 //The Bragg model could be used as an alternative as it offers the same differential cross section
64
65 theBetheBlochDirectEMModel = new G4BetheBlochModel(G4GenericIon::GenericIon());
66 theBraggIonDirectEMModel = new G4BraggIonModel(G4GenericIon::GenericIon());
70 /* theDirectPrimaryPartDef =fwd_ion;
71 theAdjEquivOfDirectPrimPartDef =adj_ion;
72
73 DefineProjectileProperty();*/
74
75
76
77
78}
static G4AdjointElectron * AdjointElectron()
static G4GenericIon * GenericIon()
Definition: G4GenericIon.cc:92
G4ParticleDefinition * theDirectPrimaryPartDef
G4bool UseOnlyOneMatrixForAllElements
G4ParticleDefinition * theAdjEquivOfDirectSecondPartDef
G4ParticleDefinition * theAdjEquivOfDirectPrimPartDef

◆ ~G4AdjointIonIonisationModel()

G4AdjointIonIonisationModel::~G4AdjointIonIonisationModel ( )
virtual

Definition at line 81 of file G4AdjointIonIonisationModel.cc.

82{;}

Member Function Documentation

◆ CorrectPostStepWeight()

void G4AdjointIonIonisationModel::CorrectPostStepWeight ( G4ParticleChange fParticleChange,
G4double  old_weight,
G4double  adjointPrimKinEnergy,
G4double  projectileKinEnergy,
G4bool  IsScatProjToProjCase 
)
virtual

Reimplemented from G4VEmAdjointModel.

Definition at line 266 of file G4AdjointIonIonisationModel.cc.

268{
269 //It is needed because the direct cross section used to compute the differential cross section is not the one used in
270 // the direct model where the GenericIon stuff is considered with correction of effective charge. In the direct model the samnepl of secondaries does
271 // not reflect the integral cross section. The integral fwd cross section that we used to compute the differential CS
272 // match the sample of secondaries in the forward case despite the fact that its is not the same total CS than in the FWD case. For this reasion an extra
273 // weight correction is needed at the end.
274
275
276 G4double new_weight=old_weight;
277
278 //the correction of CS due to the problem explained above
279 G4double kinEnergyProjScaled = massRatio*projectileKinEnergy;
280 theDirectEMModel =theBraggIonDirectEMModel;
281 if (kinEnergyProjScaled >2.*MeV && !use_only_bragg) theDirectEMModel = theBetheBlochDirectEMModel; //Bethe Bloch Model
283 G4double chargeSqRatio =1.;
284 if (chargeSquare>1.) chargeSqRatio = theDirectEMModel->GetChargeSquareRatio(theDirectPrimaryPartDef,currentMaterial,projectileKinEnergy);
285 G4double CorrectFwdCS = chargeSqRatio*theDirectEMModel->ComputeCrossSectionPerAtom(G4GenericIon::GenericIon(),kinEnergyProjScaled,1,1 ,currentTcutForDirectSecond,1.e20);
286 if (UsedFwdCS >0) new_weight*= CorrectFwdCS/UsedFwdCS;//May be some check is needed if UsedFwdCS ==0 probably that then we should avoid a secondary to be produced,
287
288
289 //additional CS crorrection needed for cross section biasing in general.
290 //May be wrong for ions!!! Most of the time not used!
291 G4double w_corr =1./CS_biasing_factor;
293 new_weight*=w_corr;
294
295 new_weight*=projectileKinEnergy/adjointPrimKinEnergy;
296
297 fParticleChange->SetParentWeightByProcess(false);
298 fParticleChange->SetSecondaryWeightByProcess(false);
299 fParticleChange->ProposeParentWeight(new_weight);
300}
double G4double
Definition: G4Types.hh:64
G4double GetPostStepWeightCorrection()
static G4AdjointCSManager * GetAdjointCSManager()
G4VEmModel * theDirectEMModel
G4Material * currentMaterial
G4double currentTcutForDirectSecond
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0., G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.cc:240
virtual G4double GetChargeSquareRatio(const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
Definition: G4VEmModel.cc:262
void SetSecondaryWeightByProcess(G4bool)
void SetParentWeightByProcess(G4bool)
void ProposeParentWeight(G4double finalWeight)

Referenced by SampleSecondaries().

◆ DiffCrossSectionPerAtomPrimToSecond()

G4double G4AdjointIonIonisationModel::DiffCrossSectionPerAtomPrimToSecond ( G4double  kinEnergyProj,
G4double  kinEnergyProd,
G4double  Z,
G4double  A = 0. 
)
virtual

Reimplemented from G4VEmAdjointModel.

Definition at line 159 of file G4AdjointIonIonisationModel.cc.

164{//Probably that here the Bragg Model should be also used for kinEnergyProj/nuc<2MeV
165
166
167
168 G4double dSigmadEprod=0;
169 G4double Emax_proj = GetSecondAdjEnergyMaxForProdToProjCase(kinEnergyProd);
170 G4double Emin_proj = GetSecondAdjEnergyMinForProdToProjCase(kinEnergyProd);
171
172 G4double kinEnergyProjScaled = massRatio*kinEnergyProj;
173
174
175 if (kinEnergyProj>Emin_proj && kinEnergyProj<=Emax_proj){ //the produced particle should have a kinetic energy smaller than the projectile
176 G4double Tmax=kinEnergyProj;
177
178 G4double E1=kinEnergyProd;
179 G4double E2=kinEnergyProd*1.000001;
180 G4double dE=(E2-E1);
181 G4double sigma1,sigma2;
182 theDirectEMModel =theBraggIonDirectEMModel;
183 if (kinEnergyProjScaled >2.*MeV && !use_only_bragg) theDirectEMModel = theBetheBlochDirectEMModel; //Bethe Bloch Model
184 sigma1=theDirectEMModel->ComputeCrossSectionPerAtom(theDirectPrimaryPartDef,kinEnergyProj,Z,A ,E1,1.e20);
185 sigma2=theDirectEMModel->ComputeCrossSectionPerAtom(theDirectPrimaryPartDef,kinEnergyProj,Z,A ,E2,1.e20);
186
187 dSigmadEprod=(sigma1-sigma2)/dE;
188
189 //G4double chargeSqRatio = currentModel->GetChargeSquareRatio(theDirectPrimaryPartDef,currentMaterial,E);
190
191
192
193 if (dSigmadEprod>1.) {
194 G4cout<<"sigma1 "<<kinEnergyProj/MeV<<'\t'<<kinEnergyProd/MeV<<'\t'<<sigma1<<G4endl;
195 G4cout<<"sigma2 "<<kinEnergyProj/MeV<<'\t'<<kinEnergyProd/MeV<<'\t'<<sigma2<<G4endl;
196 G4cout<<"dsigma "<<kinEnergyProj/MeV<<'\t'<<kinEnergyProd/MeV<<'\t'<<dSigmadEprod<<G4endl;
197
198 }
199
200
201
202
203
204
205 if (theDirectEMModel == theBetheBlochDirectEMModel ){
206 //correction of differential cross section at high energy to correct for the suppression of particle at secondary at high
207 //energy used in the Bethe Bloch Model. This correction consist to multiply by g the probability function used
208 //to test the rejection of a secondary
209 //-------------------------
210
211 //Source code taken from G4BetheBlochModel::SampleSecondaries
212
213 G4double deltaKinEnergy = kinEnergyProd;
214
215 //Part of the taken code
216 //----------------------
217
218
219
220 // projectile formfactor - suppresion of high energy
221 // delta-electron production at high energy
222
223
224 G4double x = formfact*deltaKinEnergy;
225 if(x > 1.e-6) {
226 G4double totEnergy = kinEnergyProj + mass;
227 G4double etot2 = totEnergy*totEnergy;
228 G4double beta2 = kinEnergyProj*(kinEnergyProj + 2.0*mass)/etot2;
229 G4double f;
230 G4double f1 = 0.0;
231 f = 1.0 - beta2*deltaKinEnergy/Tmax;
232 if( 0.5 == spin ) {
233 f1 = 0.5*deltaKinEnergy*deltaKinEnergy/etot2;
234 f += f1;
235 }
236 G4double x1 = 1.0 + x;
237 G4double gg = 1.0/(x1*x1);
238 if( 0.5 == spin ) {
239 G4double x2 = 0.5*electron_mass_c2*deltaKinEnergy/(mass*mass);
240 gg *= (1.0 + magMoment2*(x2 - f1/f)/(1.0 + x2));
241 }
242 if(gg > 1.0) {
243 G4cout << "### G4BetheBlochModel in Adjoint Sim WARNING: gg= " << gg
244 << G4endl;
245 gg=1.;
246 }
247 //G4cout<<"gg"<<gg<<G4endl;
248 dSigmadEprod*=gg;
249 }
250 }
251
252 }
253
254 return dSigmadEprod;
255}
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
virtual G4double GetSecondAdjEnergyMinForProdToProjCase(G4double PrimAdjEnergy)
virtual G4double GetSecondAdjEnergyMaxForProdToProjCase(G4double PrimAdjEnergy)

◆ GetSecondAdjEnergyMaxForProdToProjCase()

G4double G4AdjointIonIonisationModel::GetSecondAdjEnergyMaxForProdToProjCase ( G4double  PrimAdjEnergy)
virtual

Reimplemented from G4VEmAdjointModel.

Definition at line 356 of file G4AdjointIonIonisationModel.cc.

357{ return HighEnergyLimit;
358}

Referenced by DiffCrossSectionPerAtomPrimToSecond().

◆ GetSecondAdjEnergyMaxForScatProjToProjCase()

G4double G4AdjointIonIonisationModel::GetSecondAdjEnergyMaxForScatProjToProjCase ( G4double  PrimAdjEnergy)
virtual

Reimplemented from G4VEmAdjointModel.

Definition at line 344 of file G4AdjointIonIonisationModel.cc.

345{
346 G4double Tmax=PrimAdjEnergy*one_plus_ratio_2/(one_minus_ratio_2-2.*ratio*PrimAdjEnergy/mass);
347 return Tmax;
348}

◆ GetSecondAdjEnergyMinForProdToProjCase()

G4double G4AdjointIonIonisationModel::GetSecondAdjEnergyMinForProdToProjCase ( G4double  PrimAdjEnergy)
virtual

Reimplemented from G4VEmAdjointModel.

Definition at line 361 of file G4AdjointIonIonisationModel.cc.

362{ G4double Tmin= (2*PrimAdjEnergy-4*mass + std::sqrt(4.*PrimAdjEnergy*PrimAdjEnergy +16.*mass*mass + 8.*PrimAdjEnergy*mass*(1/ratio +ratio)))/4.;
363 return Tmin;
364}

Referenced by DiffCrossSectionPerAtomPrimToSecond().

◆ GetSecondAdjEnergyMinForScatProjToProjCase()

G4double G4AdjointIonIonisationModel::GetSecondAdjEnergyMinForScatProjToProjCase ( G4double  PrimAdjEnergy,
G4double  Tcut = 0 
)
virtual

Reimplemented from G4VEmAdjointModel.

Definition at line 351 of file G4AdjointIonIonisationModel.cc.

352{ return PrimAdjEnergy+Tcut;
353}

◆ SampleSecondaries()

void G4AdjointIonIonisationModel::SampleSecondaries ( const G4Track aTrack,
G4bool  IsScatProjToProjCase,
G4ParticleChange fParticleChange 
)
virtual

Implements G4VEmAdjointModel.

Definition at line 85 of file G4AdjointIonIonisationModel.cc.

88{
89 const G4DynamicParticle* theAdjointPrimary =aTrack.GetDynamicParticle();
90
91 //Elastic inverse scattering
92 //---------------------------------------------------------
93 G4double adjointPrimKinEnergy = theAdjointPrimary->GetKineticEnergy();
94 G4double adjointPrimP =theAdjointPrimary->GetTotalMomentum();
95
96 if (adjointPrimKinEnergy>HighEnergyLimit*0.999){
97 return;
98 }
99
100 //Sample secondary energy
101 //-----------------------
102 G4double projectileKinEnergy = SampleAdjSecEnergyFromCSMatrix(adjointPrimKinEnergy, IsScatProjToProjCase);
103 CorrectPostStepWeight(fParticleChange,
104 aTrack.GetWeight(),
105 adjointPrimKinEnergy,
106 projectileKinEnergy,
107 IsScatProjToProjCase); //Caution !!!this weight correction should be always applied
108
109
110 //Kinematic:
111 //we consider a two body elastic scattering for the forward processes where the projectile knock on an e- at rest and gives
112 // him part of its energy
113 //----------------------------------------------------------------------------------------
114
116 G4double projectileTotalEnergy = projectileM0+projectileKinEnergy;
117 G4double projectileP2 = projectileTotalEnergy*projectileTotalEnergy - projectileM0*projectileM0;
118
119
120
121 //Companion
122 //-----------
124 if (IsScatProjToProjCase) {
126 }
127 G4double companionTotalEnergy =companionM0+ projectileKinEnergy-adjointPrimKinEnergy;
128 G4double companionP2 = companionTotalEnergy*companionTotalEnergy - companionM0*companionM0;
129
130
131 //Projectile momentum
132 //--------------------
133 G4double P_parallel = (adjointPrimP*adjointPrimP + projectileP2 - companionP2)/(2.*adjointPrimP);
134 G4double P_perp = std::sqrt( projectileP2 - P_parallel*P_parallel);
135 G4ThreeVector dir_parallel=theAdjointPrimary->GetMomentumDirection();
136 G4double phi =G4UniformRand()*2.*3.1415926;
137 G4ThreeVector projectileMomentum = G4ThreeVector(P_perp*std::cos(phi),P_perp*std::sin(phi),P_parallel);
138 projectileMomentum.rotateUz(dir_parallel);
139
140
141
142 if (!IsScatProjToProjCase ){ //kill the primary and add a secondary
143 fParticleChange->ProposeTrackStatus(fStopAndKill);
144 fParticleChange->AddSecondary(new G4DynamicParticle(theAdjEquivOfDirectPrimPartDef,projectileMomentum));
145 //G4cout<<"projectileMomentum "<<projectileMomentum<<G4endl;
146 }
147 else {
148 fParticleChange->ProposeEnergy(projectileKinEnergy);
149 fParticleChange->ProposeMomentumDirection(projectileMomentum.unit());
150 }
151
152
153
154
155}
CLHEP::Hep3Vector G4ThreeVector
@ fStopAndKill
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector unit() const
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
virtual void CorrectPostStepWeight(G4ParticleChange *fParticleChange, G4double old_weight, G4double adjointPrimKinEnergy, G4double projectileKinEnergy, G4bool IsScatProjToProjCase)
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
G4double GetTotalMomentum() const
void AddSecondary(G4Track *aSecondary)
void ProposeEnergy(G4double finalEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
G4double GetWeight() const
const G4DynamicParticle * GetDynamicParticle() const
G4double SampleAdjSecEnergyFromCSMatrix(size_t MatrixIndex, G4double prim_energy, G4bool IsScatProjToProjCase)
void ProposeTrackStatus(G4TrackStatus status)

◆ SetIon()

void G4AdjointIonIonisationModel::SetIon ( G4ParticleDefinition adj_ion,
G4ParticleDefinition fwd_ion 
)

Definition at line 258 of file G4AdjointIonIonisationModel.cc.

259{ theDirectPrimaryPartDef =fwd_ion;
261
262 DefineProjectileProperty();
263}

◆ SetUseOnlyBragg()

void G4AdjointIonIonisationModel::SetUseOnlyBragg ( G4bool  aBool)
inline

Definition at line 106 of file G4AdjointIonIonisationModel.hh.

106{use_only_bragg =aBool;}

The documentation for this class was generated from the following files: