Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4MuonMinusBoundDecay Class Reference

#include <G4MuonMinusBoundDecay.hh>

+ Inheritance diagram for G4MuonMinusBoundDecay:

Public Member Functions

 G4MuonMinusBoundDecay ()
 
 ~G4MuonMinusBoundDecay ()
 
G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
void ModelDescription (std::ostream &outFile) const
 
- Public Member Functions inherited from G4HadronicInteraction
 G4HadronicInteraction (const G4String &modelName="HadronicModel")
 
virtual ~G4HadronicInteraction ()
 
virtual G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)=0
 
virtual G4double SampleInvariantT (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
virtual G4bool IsApplicable (const G4HadProjectile &, G4Nucleus &)
 
G4double GetMinEnergy () const
 
G4double GetMinEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMinEnergy (G4double anEnergy)
 
void SetMinEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMinEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4double GetMaxEnergy () const
 
G4double GetMaxEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMaxEnergy (const G4double anEnergy)
 
void SetMaxEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMaxEnergy (G4double anEnergy, const G4Material *aMaterial)
 
const G4HadronicInteractionGetMyPointer () const
 
G4int GetVerboseLevel () const
 
void SetVerboseLevel (G4int value)
 
const G4StringGetModelName () const
 
void DeActivateFor (const G4Material *aMaterial)
 
void ActivateFor (const G4Material *aMaterial)
 
void DeActivateFor (const G4Element *anElement)
 
void ActivateFor (const G4Element *anElement)
 
G4bool IsBlocked (const G4Material *aMaterial) const
 
G4bool IsBlocked (const G4Element *anElement) const
 
void SetRecoilEnergyThreshold (G4double val)
 
G4double GetRecoilEnergyThreshold () const
 
G4bool operator== (const G4HadronicInteraction &right) const
 
G4bool operator!= (const G4HadronicInteraction &right) const
 
virtual const std::pair< G4double, G4doubleGetFatalEnergyCheckLevels () const
 
virtual std::pair< G4double, G4doubleGetEnergyMomentumCheckLevels () const
 
void SetEnergyMomentumCheckLevels (G4double relativeLevel, G4double absoluteLevel)
 
virtual void ModelDescription (std::ostream &outFile) const
 

Additional Inherited Members

- Protected Member Functions inherited from G4HadronicInteraction
void SetModelName (const G4String &nam)
 
G4bool IsBlocked () const
 
void Block ()
 
- Protected Attributes inherited from G4HadronicInteraction
G4HadFinalState theParticleChange
 
G4int verboseLevel
 
G4double theMinEnergy
 
G4double theMaxEnergy
 
G4bool isBlocked
 

Detailed Description

Definition at line 67 of file G4MuonMinusBoundDecay.hh.

Constructor & Destructor Documentation

◆ G4MuonMinusBoundDecay()

G4MuonMinusBoundDecay::G4MuonMinusBoundDecay ( )

Definition at line 55 of file G4MuonMinusBoundDecay.cc.

56 : G4HadronicInteraction("muMinusBoundDeacy")
57{
58 fMuMass = G4MuonMinus::MuonMinus()->GetPDGMass();
59}
static G4MuonMinus * MuonMinus()
Definition: G4MuonMinus.cc:100

◆ ~G4MuonMinusBoundDecay()

G4MuonMinusBoundDecay::~G4MuonMinusBoundDecay ( )

Definition at line 63 of file G4MuonMinusBoundDecay.cc.

64{}

Member Function Documentation

◆ ApplyYourself()

G4HadFinalState * G4MuonMinusBoundDecay::ApplyYourself ( const G4HadProjectile aTrack,
G4Nucleus targetNucleus 
)
virtual

Implements G4HadronicInteraction.

Definition at line 69 of file G4MuonMinusBoundDecay.cc.

71{
72 result.Clear();
73 G4int Z = targetNucleus.GetZ_asInt();
74 G4int A = targetNucleus.GetA_asInt();
75
76 // Decide on Decay or Capture, and doit.
77 G4double lambdac = GetMuonCaptureRate(Z, A);
78 G4double lambdad = GetMuonDecayRate(Z);
79 G4double lambda = lambdac + lambdad;
80
81 // === sample capture time and change time of projectile
82
83 G4double time = -std::log(G4UniformRand()) / lambda;
84 G4HadProjectile* p = const_cast<G4HadProjectile*>(&projectile);
85 p->SetGlobalTime(time);
86
87 //G4cout << "lambda= " << lambda << " lambdac= " << lambdac
88 //<< " t= " << time << G4endl;
89
90 // cascade
91 if( G4UniformRand()*lambda < lambdac) {
93
94 } else {
95
96 // Simulation on Decay of mu- on a K-shell of the muonic atom
98 G4double xmax = 1 + electron_mass_c2*electron_mass_c2/(fMuMass*fMuMass);
99 G4double xmin = 2.0*electron_mass_c2/fMuMass;
100 G4double KEnergy = projectile.GetBoundEnergy();
101
102 /*
103 G4cout << "G4MuonMinusBoundDecay::ApplyYourself"
104 << " XMAX= " << xmax << " Ebound= " << KEnergy<< G4endl;
105 */
106 G4double pmu = std::sqrt(KEnergy*(KEnergy + 2.0*fMuMass));
107 G4double emu = KEnergy + fMuMass;
109 G4LorentzVector MU(pmu*dir, emu);
110 G4ThreeVector bst = MU.boostVector();
111
112 G4double Eelect, Pelect, x, ecm;
113 G4LorentzVector EL, NN;
114 // Calculate electron energy
115 do {
116 do {
117 x = xmin + (xmax-xmin)*G4UniformRand();
118 } while (G4UniformRand() > (3.0 - 2.0*x)*x*x );
119 Eelect = x*fMuMass*0.5;
120 Pelect = 0.0;
121 if(Eelect > electron_mass_c2) {
122 Pelect = std::sqrt(Eelect*Eelect - electron_mass_c2*electron_mass_c2);
123 } else {
124 Pelect = 0.0;
125 Eelect = electron_mass_c2;
126 }
127 dir = G4RandomDirection();
128 EL = G4LorentzVector(Pelect*dir,Eelect);
129 EL.boost(bst);
130 Eelect = EL.e() - electron_mass_c2 - 2.0*KEnergy;
131 //
132 // Calculate rest frame parameters of 2 neutrinos
133 //
134 NN = MU - EL;
135 ecm = NN.mag2();
136 } while (Eelect < 0.0 || ecm < 0.0);
137
138 //
139 // Create electron
140 //
142 EL.vect().unit(),
143 Eelect);
144
145 AddNewParticle(dp, time);
146 //
147 // Create Neutrinos
148 //
149 ecm = 0.5*std::sqrt(ecm);
150 bst = NN.boostVector();
151 G4ThreeVector p1 = ecm * G4RandomDirection();
152 G4LorentzVector N1 = G4LorentzVector(p1,ecm);
153 N1.boost(bst);
155 AddNewParticle(dp, time);
156 NN -= N1;
158 AddNewParticle(dp, time);
159 }
160 return &result;
161}
@ isAlive
@ stopAndKill
CLHEP::HepLorentzVector G4LorentzVector
G4ThreeVector G4RandomDirection()
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector boostVector() const
HepLorentzVector & boost(double, double, double)
static G4AntiNeutrinoE * AntiNeutrinoE()
static G4Electron * Electron()
Definition: G4Electron.cc:94
void SetStatusChange(G4HadFinalStateStatus aS)
void SetGlobalTime(G4double t)
static G4NeutrinoMu * NeutrinoMu()
Definition: G4NeutrinoMu.cc:85
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115

◆ ModelDescription()

void G4MuonMinusBoundDecay::ModelDescription ( std::ostream &  outFile) const
virtual

Reimplemented from G4HadronicInteraction.

Definition at line 270 of file G4MuonMinusBoundDecay.cc.

271{
272 outFile << "Sample probabilities of mu- nuclear capture of decay"
273 << " from K-shell orbit.\n"
274 << " Time of projectile is changed taking into account life time"
275 << " of muonic atom.\n"
276 << " If decay is sampled primary state become stopAndKill,"
277 << " else - isAlive.\n"
278 << "Based of reviews:\n"
279 << " N.C.Mukhopadhyay Phy. Rep. 30 (1977) 1.\n"
280 << " B.B.Balashov, G.Ya.Korenman, P.A.Eramgan, Atomizdat, 1978.\n";
281
282}

The documentation for this class was generated from the following files: