48 fUpperLimit(100000*GeV), fLowerLimit(0.1*MeV),
49 fRadiusConst(1.08*fermi),
50 fTotalXsc(0.0), fElasticXsc(0.0), fInelasticXsc(0.0), fProductionXsc(0.0),
51 fDiffractionXsc(0.0), fHadronNucleonXsc(0.0)
65 outFile <<
"G4GGNuclNuclCrossSection calculates total, inelastic and\n"
66 <<
"elastic cross sections for nucleus-nucleus collisions using\n"
67 <<
"the Glauber model with Gribov corrections. It is valid for\n"
68 <<
"all incident energies above 100 keV./n";
126 if( pN < 0. ) pN = 0.;
129 if( tN < 0. ) tN = 0.;
158 nucleusSquare = cofTotal*pi*( pR*pR + tR*tR );
160 ratio = sigma/nucleusSquare;
161 xsection = nucleusSquare*std::log( 1. + ratio );
162 fTotalXsc = xsection;
165 fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
168 fElasticXsc = fTotalXsc - fInelasticXsc;
181 sigma = (pZ*tZ+pN*tN)*ppInXsc + (pZ*tN+pN*tZ)*npInXsc;
183 ratio = sigma/nucleusSquare;
184 fProductionXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
186 if (fElasticXsc < 0.) fElasticXsc = 0.;
195 return fInelasticXsc;
215 G4double totEcm = std::sqrt(pM*pM + tM*tM + 2.*pElab*tM);
220 G4double bC = fine_structure_const*hbarc*pZ*tZ;
227 if( totTcm <= bC ) ratio = 0.;
228 else ratio = 1. - bC/totTcm;
231 if( ratio < 0.) ratio = 0.;
245 G4double sigma, cofInelastic = 2.4, cofTotal = 2.0, nucleusSquare, ratio;
254 if( pN < 0. ) pN = 0.;
257 if( tN < 0. ) tN = 0.;
265 nucleusSquare = cofTotal*pi*( pR*pR + tR*tR );
266 ratio = sigma/nucleusSquare;
267 fInelasticXsc = nucleusSquare*std::log(1. + cofInelastic*ratio)/cofInelastic;
268 G4double difratio = ratio/(1.+ratio);
270 fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) );
272 if (fInelasticXsc > 0.) ratio = fDiffractionXsc/fInelasticXsc;
285 G4double sigma, cofInelastic = 2.4, cofTotal = 2.0, nucleusSquare, ratio;
294 if( pN < 0. ) pN = 0.;
297 if( tN < 0. ) tN = 0.;
305 nucleusSquare = cofTotal*pi*( pR*pR + tR*tR );
306 ratio = sigma/nucleusSquare;
307 fInelasticXsc = nucleusSquare*std::log(1. + cofInelastic*ratio)/cofInelastic;
310 ratio = sigma/nucleusSquare;
311 fProductionXsc = nucleusSquare*std::log(1. + cofInelastic*ratio)/cofInelastic;
313 if (fInelasticXsc > fProductionXsc) ratio = (fInelasticXsc-fProductionXsc)/fInelasticXsc;
315 if ( ratio < 0. ) ratio = 0.;
353 GetIonTable()->GetIonMass(Zt, At);
354 targ_mass = 0.939*GeV;
361 proj_momentum /= GeV;
364 if(pParticle == theNeutron)
366 xsection =
G4double(At)*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
368 else if(pParticle == theProton)
370 xsection =
G4double(At)*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
373 xsection *= millibarn;
392 G4bool proton = (tParticle == theProton);
404 if(pParticle == theNeutron)
408 xsection = ( 35.80 + B*std::pow(std::log(sMand/s0),2.)
409 + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
413 xsection = (35.45 + B*std::pow(std::log(sMand/s0),2.)
414 + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2));
417 else if(pParticle == theProton)
421 xsection = (35.45 + B*std::pow(std::log(sMand/s0),2.)
422 + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2));
427 xsection = (35.80 + B*std::pow(std::log(sMand/s0),2.)
428 + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
431 xsection *= millibarn;
456 G4double proj_energy = proj_mass + pTkin;
457 G4double proj_momentum = std::sqrt(pTkin*(pTkin+2*proj_mass));
462 proj_momentum /= GeV;
473 if( proj_momentum >= 373.)
477 else if( proj_momentum >= 10. )
483 if (proj_momentum >= 10.) {
485 A0 = 100. - B0*std::log(3.0e7);
487 xsection = A0 + B0*std::log(proj_energy) - 11
488 + 103*std::pow(2*0.93827*proj_energy + proj_mass*proj_mass+
489 0.93827*0.93827,-0.165);
494 if(pParticle == tParticle)
496 if( proj_momentum < 0.73 )
498 hnXscv = 23 + 50*( std::pow( std::log(0.73/proj_momentum), 3.5 ) );
500 else if( proj_momentum < 1.05 )
502 hnXscv = 23 + 40*(std::log(proj_momentum/0.73))*
503 (std::log(proj_momentum/0.73));
508 75*(proj_momentum - 1.2)/(std::pow(proj_momentum,3.0) + 0.15);
514 if( proj_momentum < 0.8 )
516 hpXscv = 33+30*std::pow(std::log(proj_momentum/1.3),4.0);
518 else if( proj_momentum < 1.4 )
520 hpXscv = 33+30*std::pow(std::log(proj_momentum/0.95),2.0);
525 20.8*(std::pow(proj_momentum,2.0)-1.35)/
526 (std::pow(proj_momentum,2.50)+0.95);
531 xsection *= millibarn;
544 G4int absPDGcode = std::abs(PDGcode);
553 G4double LogPlab = std::log( Plab );
554 G4double sqrLogPlab = LogPlab * LogPlab;
558 G4double NumberOfTargetProtons = Zt;
559 G4double NumberOfTargetNucleons = At;
560 G4double NumberOfTargetNeutrons = NumberOfTargetNucleons - NumberOfTargetProtons;
562 if(NumberOfTargetNeutrons < 0.) NumberOfTargetNeutrons = 0.;
564 G4double Xtotal = 0., Xelastic = 0., Xinelastic =0.;
566 if( absPDGcode > 1000 )
568 G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) +
569 0.522*sqrLogPlab - 4.51*LogPlab;
571 G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) +
572 0.513*sqrLogPlab - 4.27*LogPlab;
574 G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) +
575 0.169*sqrLogPlab - 1.85*LogPlab;
577 G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) +
578 0.169*sqrLogPlab - 1.85*LogPlab;
580 Xtotal = ( NumberOfTargetProtons * XtotPP +
581 NumberOfTargetNeutrons * XtotPN );
583 Xelastic = ( NumberOfTargetProtons * XelPP +
584 NumberOfTargetNeutrons * XelPN );
587 Xinelastic = Xtotal - Xelastic;
588 if(Xinelastic < 0.) Xinelastic = 0.;
590 return Xinelastic*= millibarn;
603 G4double cubicrAt = std::pow (At, oneThird);
606 R = fRadiusConst*cubicrAt;
621 R *= ( a1 + b1*std::exp( -(At - meanA)/tauA1) );
625 R *= ( 1.0 + b2*( 1. - std::exp( (At - meanA)/tauA2) ) );
629 R *= ( 1.0 + b3*( 1. - std::exp( (At - meanA)/tauA3) ) );
655 G4double cubicrAt = std::pow (At, oneThird);
658 R = fRadiusConst*cubicrAt;
665 R *= ( 0.8 + 0.2*std::exp( -(At - meanA)/tauA) );
669 R *= ( 1.0 + 0.1*( 1. - std::exp( (At - meanA)/tauA) ) );
684 G4double R, r0, a11, a12, a13, a2, a3;
696 if (std::abs(A-1.) < 0.5)
return 0.89*fermi;
697 else if(std::abs(A-2.) < 0.5)
return 2.13*fermi;
698 else if(std::abs(Z-1.) < 0.5 && std::abs(A-3.) < 0.5)
return 1.80*fermi;
700 else if(std::abs(Z-2.) < 0.5 && std::abs(A-3.) < 0.5)
return 1.96*fermi;
701 else if(std::abs(Z-2.) < 0.5 && std::abs(A-4.) < 0.5)
return 1.68*fermi;
703 else if(std::abs(Z-3.) < 0.5)
return 2.40*fermi;
704 else if(std::abs(Z-4.) < 0.5)
return 2.51*fermi;
706 else if( 10. < A && A <= 16. ) r0 = a11*( 1 - std::pow(A, -2./3.) )*fermi;
707 else if( 15. < A && A <= 20. ) r0 = a12*( 1 - std::pow(A, -2./3.) )*fermi;
708 else if( 20. < A && A <= 30. ) r0 = a13*( 1 - std::pow(A, -2./3.) )*fermi;
711 R = r0*std::pow( A, 1./3. );
717 R = r0*std::pow(A, 0.27);
731 if (std::abs(A-1.) < 0.5)
return 0.89*fermi;
732 else if(std::abs(A-2.) < 0.5)
return 2.13*fermi;
733 else if(std::abs(Z-1.) < 0.5 && std::abs(A-3.) < 0.5)
return 1.80*fermi;
735 else if(std::abs(Z-2.) < 0.5 && std::abs(A-3.) < 0.5)
return 1.96*fermi;
736 else if(std::abs(Z-2.) < 0.5 && std::abs(A-4.) < 0.5)
return 1.68*fermi;
738 else if(std::abs(Z-3.) < 0.5)
return 2.40*fermi;
739 else if(std::abs(Z-4.) < 0.5)
return 2.51*fermi;
741 else return 1.24*std::pow(A, 0.28 )*fermi;
753 G4double Elab = std::sqrt ( mp * mp + Plab * Plab );
754 G4double Ecm = std::sqrt ( mp * mp + mt * mt + 2 * Elab * mt );
770 G4double Elab = std::sqrt ( mp * mp + Plab * Plab );
771 G4double sMand = mp*mp + mt*mt + 2*Elab*mt ;
#define G4_DECLARE_XS_FACTORY(cross_section)
G4ThreeVector G4ParticleMomentum
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double GetTotalEnergy() const
G4ThreeVector GetMomentum() const
G4double GetHNinelasticXscVU(const G4DynamicParticle *, G4int At, G4int Zt)
G4double CalculateEcmValue(const G4double, const G4double, const G4double)
virtual void CrossSectionDescription(std::ostream &) const
G4double GetHadronNucleonXscPDG(G4ParticleDefinition *, G4double sMand, G4ParticleDefinition *)
G4double GetHadronNucleonXscNS(G4ParticleDefinition *, G4double pTkin, G4ParticleDefinition *)
G4double GetNucleusRadiusGG(G4double At)
G4double GetZandACrossSection(const G4DynamicParticle *, G4int Z, G4int A)
G4double CalcMandelstamS(const G4double, const G4double, const G4double)
virtual G4double GetElementCrossSection(const G4DynamicParticle *, G4int Z, const G4Material *)
G4double GetNucleusRadiusRMS(G4double Z, G4double A)
G4double GetRatioQE(const G4DynamicParticle *, G4double At, G4double Zt)
G4double GetNucleusRadius(const G4DynamicParticle *, const G4Element *)
G4double GetHadronNucleonXsc(const G4DynamicParticle *, const G4Element *)
G4double GetCoulombBarier(const G4DynamicParticle *, G4double Z, G4double A, G4double pR, G4double tR)
G4double GetRatioSD(const G4DynamicParticle *, G4double At, G4double Zt)
virtual ~G4GGNuclNuclCrossSection()
G4GGNuclNuclCrossSection()
virtual G4bool IsElementApplicable(const G4DynamicParticle *, G4int Z, const G4Material *)
G4double GetNucleusRadiusDE(G4double Z, G4double A)
G4double GetHadronNucleonXscNS(const G4DynamicParticle *, const G4ParticleDefinition *)
G4double GetInelasticHadronNucleonXsc()
G4double GetIonMass(G4int Z, G4int A, G4int L=0) const
!! Only ground states are supported now
static G4Neutron * Neutron()
static G4NistManager * Instance()
G4double GetPDGMass() const
G4int GetPDGEncoding() const
G4double GetPDGCharge() const
G4int GetBaryonNumber() const
static G4ParticleTable * GetParticleTable()
G4IonTable * GetIonTable()
static G4Proton * Proton()