Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4PolarizedMollerCrossSection.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27// -------------------------------------------------------------------
28//
29// GEANT4 Class file
30//
31//
32// File name: G4PolarizedMollerCrossSection
33//
34// Author: Andreas Schaelicke
35//
36// Creation date: 12.01.2006
37//
38// Modifications:
39// 16-01-06 included cross section as calculated by P.Starovoitov
40//
41// Class Description:
42// * calculates the differential cross section
43// incomming electron K1(along positive z direction) scatters at an electron K2 at rest
44// * phi denotes the angle between the scattering plane (defined by the
45// outgoing electron) and X-axis
46// * all stokes vectors refer to spins in the Global System (X,Y,Z)
47//
48
51
53 phi0(0.)
54{
55 SetXmax(.5);
56}
59 G4double e,
60 G4double gamma,
61 G4double /*phi*/,
62 const G4StokesVector & pol0,
63 const G4StokesVector & pol1,
64 G4int flag)
65{
66 G4double re2 = classic_electr_radius * classic_electr_radius;
67 G4double gamma2=gamma*gamma;
68 G4double gmo = (gamma - 1.);
69 G4double gmo2 = (gamma - 1.)*(gamma - 1.);
70 G4double gpo = (gamma + 1.);
71 G4double pref = gamma2*re2/(gmo2*(gamma + 1.0));
72 G4double sqrttwo=std::sqrt(2.);
73 G4double f = (-1. + e);
74 G4double e2 = e*e;
75 G4double f2 = f*f;
76 // G4double w = e*(1. - e);
77
78 G4bool polarized=(!pol0.IsZero())||(!pol1.IsZero());
79
80 if (flag==0) polarized=false;
81 // Unpolarised part of XS
82 phi0 = 0.;
83 phi0+= gmo2/gamma2;
84 phi0+= ((1. - 2.*gamma)/gamma2)*(1./e + 1./(1.-e));
85 phi0+= 1./(e*e) + 1./((1. - e)*(1. - e));
86 phi0*=0.25;
87 // Initial state polarisarion dependence
88 if (polarized) {
89 G4double usephi=1.;
90 if (flag<=1) usephi=0.;
91 // G4cout<<"Polarized differential moller cross section"<<G4endl;
92 // G4cout<<"Initial state polarisation contributions"<<G4endl;
93 // G4cout<<"Diagonal Matrix Elements"<<G4endl;
94 G4double xx = (gamma - f*e*gmo*(3 + gamma))/(4*f*e*gamma2);
95 G4double yy = (-1 + f*e*gmo2 + 2*gamma)/(4*f*e*gamma2);
96 G4double zz = (-(e*gmo*(3 + gamma)) + e2*gmo*(3 + gamma) +
97 gamma*(-1 + 2*gamma))/(4*f*e*gamma2);
98
99 phi0 += xx*pol0.x()*pol1.x() + yy*pol0.y()*pol1.y() + zz*pol0.z()*pol1.z();
100
101 if (usephi==1.) {
102 // G4cout<<"Non-diagonal Matrix Elements"<<G4endl;
103 G4double xy = 0;
104 G4double xz = -((-1 + 2*e)*gmo)/(2*sqrttwo*gamma2*
105 std::sqrt(-((f*e)/gpo)));
106 G4double yx = 0;
107 G4double yz = 0;
108 G4double zx = -((-1 + 2*e)*gmo)/(2*sqrttwo*gamma2*
109 std::sqrt(-((f*e)/gpo)));
110 G4double zy = 0;
111 phi0+=yx*pol0.y()*pol1.x() + xy*pol0.x()*pol1.y();
112 phi0+=zx*pol0.z()*pol1.x() + xz*pol0.x()*pol1.z();
113 phi0+=zy*pol0.z()*pol1.y() + yz*pol0.y()*pol1.z();
114 }
115 }
116 // Final state polarisarion dependence
117 phi2=G4ThreeVector();
118 phi3=G4ThreeVector();
119
120 if (flag>=1) {
121 //
122 // Final Electron P1
123 //
124
125 // initial electron K1
126 if (!pol0.IsZero()) {
127 G4double xxP1K1 = (std::sqrt(gpo/(1 + e2*gmo + gamma - 2*e*gamma))*
128 (gamma - e*gpo))/(4*e2*gamma);
129 G4double xyP1K1 = 0;
130 G4double xzP1K1 = (-1 + 2*e*gamma)/(2*sqrttwo*f*gamma*
131 std::sqrt(e*e2*(1 + e + gamma - e*gamma)));
132 G4double yxP1K1 = 0;
133 G4double yyP1K1 = (-gamma2 + e*(-1 + gamma*(2 + gamma)))/(4*f*e2*gamma2);
134 G4double yzP1K1 = 0;
135 G4double zxP1K1 = (1 + 2*e2*gmo - 2*e*gamma)/(2*sqrttwo*f*e*gamma*
136 std::sqrt(e*(1 + e + gamma - e*gamma)));
137 G4double zyP1K1 = 0;
138 G4double zzP1K1 = (-gamma + e*(1 - 2*e*gmo + gamma))/(4*f*e2*gamma*
139 std::sqrt(1 - (2*e)/(f*gpo)));
140 phi2[0] += xxP1K1*pol0.x() + xyP1K1*pol0.y() + xzP1K1*pol0.z();
141 phi2[1] += yxP1K1*pol0.x() + yyP1K1*pol0.y() + yzP1K1*pol0.z();
142 phi2[2] += zxP1K1*pol0.x() + zyP1K1*pol0.y() + zzP1K1*pol0.z();
143 }
144 // initial electron K2
145 if (!pol1.IsZero()) {
146 G4double xxP1K2 = ((1 + e*(-3 + gamma))*std::sqrt(gpo/(1 + e2*gmo + gamma -
147 2*e*gamma)))/(4*f*e*gamma);
148 G4double xyP1K2 = 0;
149 G4double xzP1K2 = (-2 + 2*e + gamma)/(2*sqrttwo*f2*gamma*
150 std::sqrt(e*(1 + e + gamma - e*gamma)));
151 G4double yxP1K2 = 0;
152 G4double yyP1K2 = (1 - 2*gamma + e*(-1 + gamma*(2 + gamma)))/(4*f2*e*gamma2);
153 G4double yzP1K2 = 0;
154 G4double zxP1K2 = (2*e*(1 + e*gmo - 2*gamma) + gamma)/(2*sqrttwo*f2*gamma*
155 std::sqrt(e*(1 + e + gamma - e*gamma)));
156 G4double zyP1K2 = 0;
157 G4double zzP1K2 = (1 - 2*gamma + e*(-1 - 2*e*gmo + 3*gamma))/
158 (4*f2*e*gamma*std::sqrt(1 - (2*e)/(f*gpo)));
159 phi2[0] += xxP1K2*pol1.x() + xyP1K2*pol1.y() + xzP1K2*pol1.z();
160 phi2[1] += yxP1K2*pol1.x() + yyP1K2*pol1.y() + yzP1K2*pol1.z();
161 phi2[2] += zxP1K2*pol1.x() + zyP1K2*pol1.y() + zzP1K2*pol1.z();
162 }
163 //
164 // Final Electron P2
165 //
166
167 // initial electron K1
168 if (!pol0.IsZero()) {
169
170
171 G4double xxP2K1 = (-1 + e + e*gamma)/(4*f2*gamma*
172 std::sqrt((e*(2 + e*gmo))/gpo));
173 G4double xyP2K1 = 0;
174 G4double xzP2K1 = -((1 + 2*f*gamma)*std::sqrt(f/(-2 + e - e*gamma)))/
175 (2*sqrttwo*f2*e*gamma);
176 G4double yxP2K1 = 0;
177 G4double yyP2K1 = (1 - 2*gamma + e*(-1 + gamma*(2 + gamma)))/(4*f2*e*gamma2);
178 G4double yzP2K1 = 0;
179 G4double zxP2K1 = (1 + 2*e*(-2 + e + gamma - e*gamma))/(2*sqrttwo*f*e*
180 std::sqrt(-(f*(2 + e*gmo)))*gamma);
181 G4double zyP2K1 = 0;
182 G4double zzP2K1 = (std::sqrt((e*gpo)/(2 + e*gmo))*
183 (-3 + e*(5 + 2*e*gmo - 3*gamma) + 2*gamma))/(4*f2*e*gamma);
184
185 phi3[0] += xxP2K1*pol0.x() + xyP2K1*pol0.y() + xzP2K1*pol0.z();
186 phi3[1] += yxP2K1*pol0.x() + yyP2K1*pol0.y() + yzP2K1*pol0.z();
187 phi3[2] += zxP2K1*pol0.x() + zyP2K1*pol0.y() + zzP2K1*pol0.z();
188 }
189 // initial electron K2
190 if (!pol1.IsZero()) {
191
192 G4double xxP2K2 = (-2 - e*(-3 + gamma) + gamma)/
193 (4*f*e*gamma* std::sqrt((e*(2 + e*gmo))/gpo));
194 G4double xyP2K2 = 0;
195 G4double xzP2K2 = ((-2*e + gamma)*std::sqrt(f/(-2 + e - e*gamma)))/
196 (2*sqrttwo*f*e2*gamma);
197 G4double yxP2K2 = 0;
198 G4double yyP2K2 = (-gamma2 + e*(-1 + gamma*(2 + gamma)))/(4*f*e2*gamma2);
199 G4double yzP2K2 = 0;
200 G4double zxP2K2 = (gamma + 2*e*(-1 + e - e*gamma))/
201 (2*sqrttwo*e2* std::sqrt(-(f*(2 + e*gmo)))*gamma);
202 G4double zyP2K2 = 0;
203 G4double zzP2K2 = (std::sqrt((e*gpo)/(2 + e*gmo))*
204 (-2 + e*(3 + 2*e*gmo - gamma) + gamma))/(4*f*e2*gamma);
205 phi3[0] += xxP2K2*pol1.x() + xyP2K2*pol1.y() + xzP2K2*pol1.z();
206 phi3[1] += yxP2K2*pol1.x() + yyP2K2*pol1.y() + yzP2K2*pol1.z();
207 phi3[2] += zxP2K2*pol1.x() + zyP2K2*pol1.y() + zzP2K2*pol1.z();
208 }
209 }
210 phi0 *= pref;
211 phi2 *= pref;
212 phi3 *= pref;
213}
214
216 const G4StokesVector & pol3)
217{
218 G4double xs=0.;
219 xs+=phi0;
220
221 G4bool polarized=(!pol2.IsZero())||(!pol3.IsZero());
222 if (polarized) {
223 xs+=phi2*pol2 + phi3*pol3;
224 }
225 return xs;
226}
227
229 G4double xmin, G4double xmax, G4double gamma,
230 const G4StokesVector & pol0,const G4StokesVector & pol1)
231{
232 G4double xs=0.;
233
234 G4double x=xmin;
235
236 if (xmax != 1./2.) G4cout<<" warning xmax expected to be 1/2 but is "<<xmax<< G4endl;
237
238 // re -> electron radius^2;
239 G4double re2 = classic_electr_radius * classic_electr_radius;
240 G4double gamma2=gamma*gamma;
241 G4double gmo2 = (gamma - 1.)*(gamma - 1.);
242 G4double logMEM = std::log(1./x - 1.);
243 G4double pref = twopi*gamma2*re2/(gmo2*(gamma + 1.0));
244 // unpolarise XS
245 G4double sigma0 = 0.;
246 sigma0 += (gmo2/gamma2)*(0.5 - x);
247 sigma0 += ((1. - 2.*gamma)/gamma2)*logMEM;
248 sigma0 += 1./x - 1./(1. - x);
249 // longitudinal part
250 G4double sigma2=0.;
251 sigma2 += ((gamma2 + 2.*gamma - 3.)/gamma2)*(0.5 - x);
252 sigma2 += (1./gamma - 2.)*logMEM;
253 // transverse part
254 G4double sigma3=0.;
255 sigma3 += (2.*(1. - gamma)/gamma2)*(0.5 - x);
256 sigma3 += (1. - 3.*gamma)/(2.*gamma2)*logMEM;
257 // total cross section
258 xs+=pref*(sigma0 + sigma2*pol0.z()*pol1.z() + sigma3*(pol0.x()*pol1.x()+pol0.y()*pol1.y()));
259
260 return xs;
261}
262
263
265{
266 // Note, mean polarization can not contain correlation
267 // effects.
268 return 1./phi0 * phi2;
269}
271{
272 // Note, mean polarization can not contain correlation
273 // effects.
274 return 1./phi0 * phi3;
275}
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
double z() const
double x() const
double y() const
void Initialize(G4double x, G4double y, G4double phi, const G4StokesVector &p0, const G4StokesVector &p1, G4int flag=0)
G4double TotalXSection(G4double xmin, G4double xmax, G4double y, const G4StokesVector &pol0, const G4StokesVector &pol1)
G4double XSection(const G4StokesVector &pol2, const G4StokesVector &pol3)
G4bool IsZero() const