Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4QNuENuclearCrossSection.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29//
30// G4 Physics class: G4QNuENuclearCrossSection for A(nu_e,e-) cross sections
31// Created: M.V. Kossov, CERN/ITEP(Moscow), 24-SEP-2007
32// The last update: M.V. Kossov, CERN/ITEP (Moscow) 24-SEP-2007
33//
34// ****************************************************************************************
35// ********** This CLASS is temporary moved from the photolepton_hadron directory *********
36// ******* DO NOT MAKE ANY CHANGE! With time it'll move back to photolepton...(M.K.) ******
37// ****************************************************************************************
38// --------------------------------------------------------------------------------------
39// Short description: nu_e -> e nuclear XS
40// --------------------------------------------------------------------------------------
41
42//#define debug
43//#define edebug
44//#define pdebug
45//#define ppdebug
46//#define tdebug
47//#define sdebug
48
50#include "G4SystemOfUnits.hh"
51
52// Initialization of the
53G4bool G4QNuENuclearCrossSection::onlyCS=true;// Flag to calculate only CS (not QE)
54G4double G4QNuENuclearCrossSection::lastSig=0.;// Last calculated total cross section
55G4double G4QNuENuclearCrossSection::lastQEL=0.;// Last calculated quasi-el. cross section
56G4int G4QNuENuclearCrossSection::lastL=0; // Last used in cross section TheLastBin
57G4double G4QNuENuclearCrossSection::lastE=0.; // Last used in cross section TheEnergy
58G4double* G4QNuENuclearCrossSection::lastEN=0; // Pointer to the Energy Scale of TX & QE
59G4double* G4QNuENuclearCrossSection::lastTX=0; // Pointer to the LastArray of TX function
60G4double* G4QNuENuclearCrossSection::lastQE=0; // Pointer to the LastArray of QE function
61G4int G4QNuENuclearCrossSection::lastPDG=0; // The last PDG code of the projectile
62G4int G4QNuENuclearCrossSection::lastN=0; // The last N of calculated nucleus
63G4int G4QNuENuclearCrossSection::lastZ=0; // The last Z of calculated nucleus
64G4double G4QNuENuclearCrossSection::lastP=0.; // Last used in cross section Momentum
65G4double G4QNuENuclearCrossSection::lastTH=0.; // Last threshold momentum
66G4double G4QNuENuclearCrossSection::lastCS=0.; // Last value of the Cross Section
67G4int G4QNuENuclearCrossSection::lastI=0; // The last position in the DAMDB
68std::vector<G4double*>* G4QNuENuclearCrossSection::TX = new std::vector<G4double*>;
69std::vector<G4double*>* G4QNuENuclearCrossSection::QE = new std::vector<G4double*>;
70
71// Returns Pointer to the G4VQCrossSection class
73{
74 static G4QNuENuclearCrossSection theCrossSection; //**Static body of the Cross Section**
75 return &theCrossSection;
76}
77
79{
80 G4int lens=TX->size();
81 for(G4int i=0; i<lens; ++i) delete[] (*TX)[i];
82 delete TX;
83 G4int hens=QE->size();
84 for(G4int i=0; i<hens; ++i) delete[] (*QE)[i];
85 delete QE;
86}
87
88// The main member function giving the collision cross section (P is in IU, CS is in mb)
89// Make pMom in independent units ! (Now it is MeV)
91 G4int tgZ, G4int tgN, G4int pPDG)
92{
93 static G4int j; // A#0f records found in DB for this projectile
94 static std::vector <G4int> colPDG;// Vector of the projectile PDG code
95 static std::vector <G4int> colN; // Vector of N for calculated nuclei (isotops)
96 static std::vector <G4int> colZ; // Vector of Z for calculated nuclei (isotops)
97 static std::vector <G4double> colP; // Vector of last momenta for the reaction
98 static std::vector <G4double> colTH; // Vector of energy thresholds for the reaction
99 static std::vector <G4double> colCS; // Vector of last cross sections for the reaction
100 // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
101 G4double pEn=pMom;
102#ifdef debug
103 G4cout<<"G4QNENCS::GetCS:>> f="<<fCS<<", p="<<pMom<<", Z="<<tgZ<<"("<<lastZ<<") ,N="<<tgN
104 <<"("<<lastN<<"),PDG="<<pPDG<<"("<<lastPDG<<"), T="<<pEn<<"("<<lastTH<<")"<<",Sz="
105 <<colN.size()<<G4endl;
106 //CalculateCrossSection(fCS,-27,j,lastPDG,lastZ,lastN,pMom); // DUMMY TEST
107#endif
108 if(pPDG!=12)
109 {
110#ifdef debug
111 G4cout<<"G4QNENCS::GetCS: *** Found pPDG="<<pPDG<<" =--=> CS=0"<<G4endl;
112 //CalculateCrossSection(fCS,-27,j,lastPDG,lastZ,lastN,pMom); // DUMMY TEST
113#endif
114 return 0.; // projectile PDG=0 is a mistake (?!) @@
115 }
116 G4bool in=false; // By default the isotope must be found in the AMDB
117 if(tgN!=lastN || tgZ!=lastZ || pPDG!=lastPDG)// The nucleus was not the last used isotope
118 {
119 in = false; // By default the isotope haven't be found in AMDB
120 lastP = 0.; // New momentum history (nothing to compare with)
121 lastPDG = pPDG; // The last PDG of the projectile
122 lastN = tgN; // The last N of the calculated nucleus
123 lastZ = tgZ; // The last Z of the calculated nucleus
124 lastI = colN.size(); // Size of the Associative Memory DB in the heap
125 j = 0; // A#0f records found in DB for this projectile
126 if(lastI) for(G4int i=0; i<lastI; i++) if(colPDG[i]==pPDG) // The partType is found
127 { // The nucleus with projPDG is found in AMDB
128 if(colN[i]==tgN && colZ[i]==tgZ)
129 {
130 lastI=i;
131 lastTH =colTH[i]; // Last THreshold (A-dependent)
132#ifdef pdebug
133 G4cout<<"G4QNENCS::GetCS:*Found*P="<<pMom<<",Threshold="<<lastTH<<",j="<<j<<G4endl;
134 //CalculateCrossSection(fCS,-27,j,lastPDG,lastZ,lastN,pMom); // DUMMY TEST
135#endif
136 if(pEn<=lastTH)
137 {
138#ifdef pdebug
139 G4cout<<"G4QNENCS::GetCS:Found T="<<pEn<<" < Threshold="<<lastTH<<",X=0"<<G4endl;
140 //CalculateCrossSection(fCS,-27,j,lastPDG,lastZ,lastN,pMom); // DUMMY TEST
141#endif
142 return 0.; // Energy is below the Threshold value
143 }
144 lastP =colP [i]; // Last Momentum (A-dependent)
145 lastCS =colCS[i]; // Last CrossSect (A-dependent)
146 if(std::fabs(lastP/pMom-1.)<tolerance)
147 {
148#ifdef pdebug
149 G4cout<<"G4QNENCS::GetCS:P="<<pMom<<",CS="<<lastCS*millibarn<<G4endl;
150 //CalculateCrossSection(fCS,-27,j,lastPDG,lastZ,lastN,pMom); // DUMMY TEST
151#endif
152 return lastCS*millibarn; // Use theLastCS
153 }
154 in = true; // This is the case when the isotop is found in DB
155 // Momentum pMom is in IU ! @@ Units
156#ifdef pdebug
157 G4cout<<"G4QNENCS::G:UpdaDB P="<<pMom<<",f="<<fCS<<",lI="<<lastI<<",j="<<j<<G4endl;
158#endif
159 lastCS=CalculateCrossSection(fCS,-1,j,lastPDG,lastZ,lastN,pMom); // read & update
160#ifdef pdebug
161 G4cout<<"G4QNENCS::GetCrosSec: *****> New (inDB) Calculated CS="<<lastCS<<G4endl;
162 //CalculateCrossSection(fCS,-27,j,lastPDG,lastZ,lastN,pMom); // DUMMY TEST
163#endif
164 if(lastCS<=0. && pEn>lastTH) // Correct the threshold
165 {
166#ifdef pdebug
167 G4cout<<"G4QNENCS::GetCS: New T="<<pEn<<"(CS=0) > Threshold="<<lastTH<<G4endl;
168#endif
169 lastTH=pEn;
170 }
171 break; // Go out of the LOOP
172 }
173#ifdef pdebug
174 G4cout<<"---G4QNENCrossSec::GetCrosSec:pPDG="<<pPDG<<",j="<<j<<",N="<<colN[i]
175 <<",Z["<<i<<"]="<<colZ[i]<<",cPDG="<<colPDG[i]<<G4endl;
176 //CalculateCrossSection(fCS,-27,j,lastPDG,lastZ,lastN,pMom); // DUMMY TEST
177#endif
178 j++; // Increment a#0f records found in DB for this pPDG
179 }
180 if(!in) // This nucleus has not been calculated previously
181 {
182#ifdef pdebug
183 G4cout<<"G4QNENCS::GetCrSec: CalcNew P="<<pMom<<",f="<<fCS<<",lastI="<<lastI<<G4endl;
184#endif
185 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
186 lastCS=CalculateCrossSection(fCS,0,j,lastPDG,lastZ,lastN,pMom); //calculate & create
187 if(lastCS<=0.)
188 {
189 lastTH = ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
190#ifdef pdebug
191 G4cout<<"G4QNENCrossSection::GetCrossSect:NewThresh="<<lastTH<<",T="<<pEn<<G4endl;
192#endif
193 if(pEn>lastTH)
194 {
195#ifdef pdebug
196 G4cout<<"G4QNENCS::GetCS: First T="<<pEn<<"(CS=0) > Threshold="<<lastTH<<G4endl;
197#endif
198 lastTH=pEn;
199 }
200 }
201#ifdef pdebug
202 G4cout<<"G4QNENCS::GetCrosSec:New CS="<<lastCS<<",lZ="<<lastN<<",lN="<<lastZ<<G4endl;
203 //CalculateCrossSection(fCS,-27,j,lastPDG,lastZ,lastN,pMom); // DUMMY TEST
204#endif
205 colN.push_back(tgN);
206 colZ.push_back(tgZ);
207 colPDG.push_back(pPDG);
208 colP.push_back(pMom);
209 colTH.push_back(lastTH);
210 colCS.push_back(lastCS);
211#ifdef pdebug
212 G4cout<<"G4QNENCS::GetCS:1st,P="<<pMom<<"(MeV),X="<<lastCS*millibarn<<"(mb)"<<G4endl;
213 //CalculateCrossSection(fCS,-27,j,lastPDG,lastZ,lastN,pMom); // DUMMY TEST
214#endif
215 return lastCS*millibarn;
216 } // End of creation of the new set of parameters
217 else
218 {
219#ifdef pdebug
220 G4cout<<"G4QNENCS::GetCS: Update lastI="<<lastI<<",j="<<j<<G4endl;
221#endif
222 colP[lastI]=pMom;
223 colPDG[lastI]=pPDG;
224 colCS[lastI]=lastCS;
225 }
226 } // End of parameters udate
227 else if(pEn<=lastTH)
228 {
229#ifdef pdebug
230 G4cout<<"G4QNENCS::GetCS: Current T="<<pEn<<" < Threshold="<<lastTH<<", CS=0"<<G4endl;
231 //CalculateCrossSection(fCS,-27,j,lastPDG,lastZ,lastN,pMom); // DUMMY TEST
232#endif
233 return 0.; // Momentum is below the Threshold Value -> CS=0
234 }
235 else if(std::fabs(lastP/pMom-1.)<tolerance)
236 {
237#ifdef pdebug
238 G4cout<<"G4QNENCS::GetCS:OldCur P="<<pMom<<"="<<pMom<<",CS="<<lastCS*millibarn<<G4endl;
239 //CalculateCrossSection(fCS,-27,j,lastPDG,lastZ,lastN,pMom); // DUMMY TEST
240#endif
241 return lastCS*millibarn; // Use theLastCS
242 }
243 else
244 {
245#ifdef pdebug
246 G4cout<<"G4QNENCS::GetCS:UpdaCur P="<<pMom<<",f="<<fCS<<",I="<<lastI<<",j="<<j<<G4endl;
247#endif
248 lastCS=CalculateCrossSection(fCS,1,j,lastPDG,lastZ,lastN,pMom); // Only UpdateDB
249 lastP=pMom;
250 }
251#ifdef pdebug
252 G4cout<<"G4QNENCS::GetCrSec:End,P="<<pMom<<"(MeV),CS="<<lastCS*millibarn<<"(mb)"<<G4endl;
253 //CalculateCrossSection(fCS,-27,j,lastPDG,lastZ,lastN,pMom); // DUMMY TEST
254#endif
255 return lastCS*millibarn;
256}
257
258// Gives the threshold energy = the same for all nuclei (@@ can be reduced for hevy nuclei)
260{
261 //static const G4double mNeut = G4NucleiProperties::GetNuclearMass(1,0)/GeV;
262 //static const G4double mProt = G4NucleiProperties::GetNuclearMass(1,1)/GeV;
263 //static const G4double mDeut = G4NucleiProperties::GetNuclearMass(2,1)/GeV/2.;
264 static const G4double mN=.931494043;// Nucleon mass (inside nucleus, AtomicMassUnit, GeV)
265 static const G4double dmN=mN+mN; // Doubled nucleon mass (2*AtomicMassUnit, GeV)
266 static const G4double me=.00051099892; // electron mass in GeV
267 static const G4double me2=me*me; // Squared mass of an electron in GeV^2
268 static const G4double thresh=me+me2/dmN; // Universal threshold in GeV
269 // ---------
270 //static const G4double infEn = 9.e27;
271 G4double dN=0.;
272 if(Z>0||N>0) dN=thresh*GeV; // @@ if upgraded, change it in a total cross section
273 //@@ "dN=me+me2/G4NucleiProperties::GetNuclearMass(<G4double>(Z+N),<G4double>(Z)/GeV"
274 return dN;
275}
276
277// The main member function giving the gamma-A cross section (E_kin in MeV, CS in mb)
279 G4int, G4int targZ, G4int targN, G4double Momentum)
280{
281 static const G4double mb38=1.E-11; // Conversion 10^-38 cm^2 to mb=10^-27 cm^2
282 static const G4int nE=65; // !! If change this, change it in GetFunctions()33/65!!
283 static const G4int mL=nE-1;
284 static const G4double mN=.931494043;// Nucleon mass (inside nucleus, AtomicMassUnit, GeV)
285 static const G4double dmN=mN+mN; // Doubled nucleon mass (2*AtomicMassUnit, GeV)
286 static const G4double me=.00051099892;// electron mass in GeV
287 static const G4double me2=me*me; // Squared mass of an electron in GeV^2
288 static const G4double EMi=me+me2/dmN; // Universal threshold of the reaction in GeV
289 static const G4double EMa=300.; // Maximum tabulated Energy of nu_e in GeV
290 // *** Begin of the Associative memory for acceleration of the cross section calculations
291 static std::vector <G4double> colH;//?? Vector of HighEnergyCoefficients (functional)
292 static G4bool first=true; // Flag of initialization of the energy axis
293 // *** End of Static Definitions (Associative Memory) ***
294 //const G4double Energy = aPart->GetKineticEnergy()/MeV; // Energy of the Electron
295 //G4double TotEnergy2=Momentum;
296 onlyCS=CS; // Flag to calculate only CS (not TX & QE)
297 lastE=Momentum/GeV; // Kinetic energy of the electron neutrino (in GeV)
298 if (lastE<=EMi) // Energy is below the minimum energy in the table
299 {
300 lastE=0.;
301 lastSig=0.;
302 return 0.;
303 }
304 G4int Z=targZ; // New Z, which can change the sign
305 if(F<=0) // This isotope was not the last used isotop
306 {
307 if(F<0) // This isotope was found in DAMDB =-------=> RETRIEVE
308 {
309 lastTX =(*TX)[I]; // Pointer to the prepared TX function (same isotope)
310 lastQE =(*QE)[I]; // Pointer to the prepared QE function (same isotope)
311 }
312 else // This isotope wasn't calculated previously => CREATE
313 {
314 if(first)
315 {
316 lastEN = new G4double[nE]; // This must be done only once!
317 Z=-Z; // To explain GetFunctions that E-axis must be filled
318 first=false; // To make it only once
319 }
320 lastTX = new G4double[nE]; // Allocate memory for the new TX function
321 lastQE = new G4double[nE]; // Allocate memory for the new QE function
322 G4int res=GetFunctions(Z,targN,lastTX,lastQE,lastEN);//@@analize(0=first,-1=bad,1=OK)
323 if(res<0) G4cerr<<"*W*G4NuENuclearCS::CalcCrossSect:Bad Function Retrieve"<<G4endl;
324 // *** The synchronization check ***
325 G4int sync=TX->size();
326 if(sync!=I) G4cerr<<"***G4NuENuclearCS::CalcCrossSect:Sync.="<<sync<<"#"<<I<<G4endl;
327 TX->push_back(lastTX);
328 QE->push_back(lastQE);
329 } // End of creation of the new set of parameters
330 } // End of parameters udate
331 // =----------------= NOW Calculate the Cross Section =-----------------=
332 if (lastE<=EMi) // Check that the neutrinoEnergy is higher than ThreshE
333 {
334 lastE=0.;
335 lastSig=0.;
336 return 0.;
337 }
338 if(lastE<EMa) // Linear fit is made explicitly to fix the last bin for the randomization
339 {
340 G4int chk=1;
341 G4int ran=mL/2;
342 G4int sep=ran; // as a result = an index of the left edge of the interval
343 while(ran>=2)
344 {
345 G4int newran=ran/2;
346 if(lastE<=lastEN[sep]) sep-=newran;
347 else sep+=newran;
348 ran=newran;
349 chk=chk+chk;
350 }
351 if(chk+chk!=mL) G4cerr<<"*Warn*G4NuENuclearCS::CalcCS:Table! mL="<<mL<<G4endl;
352 G4double lowE=lastEN[sep];
353 G4double highE=lastEN[sep+1];
354 G4double lowTX=lastTX[sep];
355 if(lastE<lowE||sep>=mL||lastE>highE)
356 G4cerr<<"*Warn*G4NuENuclearCS::CalcCS:Bin! "<<lowE<<" < "<<lastE<<" < "<<highE
357 <<", sep="<<sep<<", mL="<<mL<<G4endl;
358 lastSig=lastE*(lastE-lowE)*(lastTX[sep+1]-lowTX)/(highE-lowE)+lowTX; // Recover *E
359 if(!onlyCS) // Skip the differential cross-section parameters
360 {
361 G4double lowQE=lastQE[sep];
362 lastQEL=(lastE-lowE)*(lastQE[sep+1]-lowQE)/(highE-lowE)+lowQE;
363#ifdef pdebug
364 G4cout<<"G4NuENuclearCS::CalcCS: T="<<lastSig<<",Q="<<lastQEL<<",E="<<lastE<<G4endl;
365#endif
366 }
367 }
368 else
369 {
370 lastSig=lastTX[mL]; // @@ No extrapolation, just a const, while it looks shrinking...
371 lastQEL=lastQE[mL];
372 }
373 if(lastQEL<0.) lastQEL = 0.;
374 if(lastSig<0.) lastSig = 0.;
375 // The cross-sections are expected to be in mb
376 lastSig*=mb38;
377 if(!onlyCS) lastQEL*=mb38;
378 return lastSig;
379}
380
381// Calculate the cros-section functions
382// ****************************************************************************************
383// *** This tables are the same for all lepto-nuclear reactions, only mass is different ***
384// ***@@ IT'S REASONABLE TO MAKE ADDiTIONAL VIRTUAL CLASS FOR LEPTO-NUCLEAR WITH THIS@@ ***
385// ****************************************************************************************
386G4int G4QNuENuclearCrossSection::GetFunctions(G4int z, G4int n,
387 G4double* t, G4double* q, G4double* e)
388{
389 static const G4double mN=.931494043;// Nucleon mass (inside nucleus, AtomicMassUnit, GeV)
390 static const G4double dmN=mN+mN; // Doubled nucleon mass (2*AtomicMassUnit, GeV)
391 static const G4double me=.00051099892; // electron mass in GeV
392 static const G4double me2=me*me; // Squared mass of an electron in GeV^2
393 static const G4double thresh=me+me2/dmN; // Universal threshold in GeV
394 static const G4int nE=65; // !! If change this, change it in CalculateCrossSection() !!
395 static const G4double nuEn[nE]={thresh,
396 .00051331,.00053602,.00056078,.00058783,.00061743,.00064990,.00068559,.00072492,
397 .00076834,.00081641,.00086975,.00092912,.00099536,.00106950,.00115273,.00124646,
398 .00135235,.00147241,.00160901,.00176503,.00194392,.00214986,.00238797,.00266448,
399 .00298709,.00336531,.00381094,.00433879,.00496745,.00572047,.00662785,.00772806,
400 .00907075,.01072050,.01276190,.01530660,.01850330,.02255110,.02771990,.03437780,
401 .04303240,.05438970,.06944210,.08959920,.11688400,.15423600,.20597200,.27851200,
402 .38153100,.52979600,.74616300,1.0665200,1.5480900,2.2834800,3.4251100,5.2281000,
403 8.1270200,12.875900,20.808500,34.331200,57.877800,99.796200,176.16300,318.68200};
404 static const G4double TOTX[nE]={0.,
405 .00047551,.00162896,.00232785,.00292938,.00349456,.00404939,.00460908,.00518455,
406 .00578488,.00641848,.00709376,.00781964,.00860585,.00946334,.01040460,.01144420,
407 .01259910,.01388920,.01533830,.01697480,.01883260,.02095280,.02338500,.02618960,
408 .02944060,.03322870,.03766580,.04289050,.04907540,.06123530,.07521120,.09034730,
409 .10803800,.12856800,.15277600,.18174900,.21764300,.26083100,.31424900,.37935600,
410 .45871900,.55375100,.66506600,.79039400,.92276600,1.0489000,1.1500300,1.2071700,
411 1.2096800,1.1612200,1.0782900,.98251100,.89137400,.81472700,.75500100,.71061200,
412 .67873900,.65619000,.64098400,.63085100,.62389900,.61664900,.61261000,.60635700};
413 static const G4double QELX[nE]={0.,
414 2.44084e-7,8.73147e-7,1.30540e-6,1.72196e-6,2.15765e-6,2.63171e-6,3.15996e-6,3.75836e-6,
415 4.44474e-6,5.24008e-6,6.16982e-6,7.26537e-6,8.56595e-6,1.01211e-5,1.19937e-5,1.42647e-5,
416 1.70384e-5,2.04506e-5,2.46796e-5,2.99611e-5,3.66090e-5,4.50456e-5,5.58425e-5,6.97817e-5,
417 8.79417e-5,.000111825,.000143542,.000186093,.000243780,.000350295,.000498489,.000698209,
418 .000979989,.001378320,.001949710,.002781960,.004027110,.005882030,.008710940,.013041400,
419 .019739800,.030118300,.046183600,.070818700,.107857000,.161778000,.236873000,.336212000,
420 .455841000,.565128000,.647837000,.701208000,.729735000,.742062000,.746495000,.748182000,
421 .749481000,.750637000,.751471000,.752237000,.752763000,.753103000,.753159000,.753315000};
422
423 // --------------------------------
424 G4int first=0;
425 if(z<0.)
426 {
427 first=1;
428 z=-z;
429 }
430 if(z<1 || z>92) // neutron and plutonium are forbidden
431 {
432 G4cout<<"***G4QNuENuclearCrossSection::GetFunctions:Z="<<z<<".No CS returned"<<G4endl;
433 return -1;
434 }
435 for(G4int k=0; k<nE; k++)
436 {
437 G4double a=n+z;
438 G4double na=n+a;
439 G4double dn=n+n;
440 G4double da=a+a;
441 G4double ta=da+a;
442 if(first) e[k]=nuEn[k]; // Energy of neutrino E (first bin k=0 can be modified)
443 t[k]=TOTX[k]*nuEn[k]*(na+na)/ta+QELX[k]*(dn+dn-da)/ta; // TotalCrossSection
444 q[k]=QELX[k]*dn/a; // QuasiElasticCrossSection
445 }
446 return first;
447}
448
449// Randomize Q2 from neutrino to the scattered electron when scattering is quasi-elastic
451{
452 static const G4double me=.00051099892; // electron mass in GeV
453 static const G4double me2=me*me; // Squared mass of an electron in GeV^2
454 static const G4double hme2=me2/2; // .5*m_e^2 in GeV^2
455 static const G4double MN=.931494043; // Nucleon mass (inside nucleus, atomicMassUnit,GeV)
456 static const double MN2=MN*MN; // M_N^2 in GeV^2
457 static const G4double power=-3.5; // direct power for the magic variable
458 static const G4double pconv=1./power;// conversion power for the magic variable
459 static const G4int nQ2=101; // #Of point in the Q2l table (in GeV^2)
460 static const G4int lQ2=nQ2-1; // index of the last in the Q2l table
461 static const G4int bQ2=lQ2-1; // index of the before last in the Q2 ltable
462 // Reversed table
463 static const G4double Xl[nQ2]={1.87905e-10,
464 .005231, .010602, .016192, .022038, .028146, .034513, .041130, .047986, .055071, .062374,
465 .069883, .077587, .085475, .093539, .101766, .110150, .118680, .127348, .136147, .145069,
466 .154107, .163255, .172506, .181855, .191296, .200825, .210435, .220124, .229886, .239718,
467 .249617, .259578, .269598, .279675, .289805, .299986, .310215, .320490, .330808, .341169,
468 .351568, .362006, .372479, .382987, .393527, .404099, .414700, .425330, .435987, .446670,
469 .457379, .468111, .478866, .489643, .500441, .511260, .522097, .532954, .543828, .554720,
470 .565628, .576553, .587492, .598447, .609416, .620398, .631394, .642403, .653424, .664457,
471 .675502, .686557, .697624, .708701, .719788, .730886, .741992, .753108, .764233, .775366,
472 .786508, .797658, .808816, .819982, .831155, .842336, .853524, .864718, .875920, .887128,
473 .898342, .909563, .920790, .932023, .943261, .954506, .965755, .977011, .988271, .999539};
474 // Direct table
475 static const G4double Xmax=Xl[lQ2];
476 static const G4double Xmin=Xl[0];
477 static const G4double dX=(Xmax-Xmin)/lQ2; // step in X(Q2, GeV^2)
478 static const G4double inl[nQ2]={0,
479 1.88843, 3.65455, 5.29282, 6.82878, 8.28390, 9.67403, 11.0109, 12.3034, 13.5583, 14.7811,
480 15.9760, 17.1466, 18.2958, 19.4260, 20.5392, 21.6372, 22.7215, 23.7933, 24.8538, 25.9039,
481 26.9446, 27.9766, 29.0006, 30.0171, 31.0268, 32.0301, 33.0274, 34.0192, 35.0058, 35.9876,
482 36.9649, 37.9379, 38.9069, 39.8721, 40.8337, 41.7920, 42.7471, 43.6992, 44.6484, 45.5950,
483 46.5390, 47.4805, 48.4197, 49.3567, 50.2916, 51.2245, 52.1554, 53.0846, 54.0120, 54.9377,
484 55.8617, 56.7843, 57.7054, 58.6250, 59.5433, 60.4603, 61.3761, 62.2906, 63.2040, 64.1162,
485 65.0274, 65.9375, 66.8467, 67.7548, 68.6621, 69.5684, 70.4738, 71.3784, 72.2822, 73.1852,
486 74.0875, 74.9889, 75.8897, 76.7898, 77.6892, 78.5879, 79.4860, 80.3835, 81.2804, 82.1767,
487 83.0724, 83.9676, 84.8622, 85.7563, 86.6499, 87.5430, 88.4356, 89.3277, 90.2194, 91.1106,
488 92.0013, 92.8917, 93.7816, 94.6711, 95.5602, 96.4489, 97.3372, 98.2252, 99.1128, 100.000};
489 G4double Enu=lastE; // Get energy of the last calculated cross-section
490 G4double dEnu=Enu+Enu; // doubled energy of nu/anu
491 G4double Enu2=Enu*Enu; // squared energy of nu/anu
492 G4double ME=Enu*MN; // M*E
493 G4double dME=ME+ME; // 2*M*E
494 G4double dEMN=(dEnu+MN)*ME;
495 G4double MEm=ME-hme2;
496 G4double sqE=Enu*std::sqrt(MEm*MEm-me2*MN2);
497 G4double E2M=MN*Enu2-(Enu+MN)*hme2;
498 G4double ymax=(E2M+sqE)/dEMN;
499 G4double ymin=(E2M-sqE)/dEMN;
500 G4double rmin=1.-ymin;
501 G4double rhm2E=hme2/Enu2;
502 G4double Q2mi=(Enu2+Enu2)*(rmin-rhm2E-std::sqrt(rmin*rmin-rhm2E-rhm2E)); // Q2_min(E_nu)
503 G4double Q2ma=dME*ymax; // Q2_max(E_nu)
504 G4double Xma=std::pow((1.+Q2mi),power); // X_max(E_nu)
505 G4double Xmi=std::pow((1.+Q2ma),power); // X_min(E_nu)
506 // Find the integral values integ(Xmi) & integ(Xma) using the direct table
507 G4double rXi=(Xmi-Xmin)/dX;
508 G4int iXi=static_cast<int>(rXi);
509 if(iXi<0) iXi=0;
510 if(iXi>bQ2) iXi=bQ2;
511 G4double dXi=rXi-iXi;
512 G4double bnti=inl[iXi];
513 G4double inti=bnti+dXi*(inl[iXi+1]-bnti);
514 //
515 G4double rXa=(Xma-Xmin)/dX;
516 G4int iXa=static_cast<int>(rXa);
517 if(iXa<0) iXa=0;
518 if(iXa>bQ2) iXa=bQ2;
519 G4double dXa=rXa-iXa;
520 G4double bnta=inl[iXa];
521 G4double inta=bnta+dXa*(inl[iXa+1]-bnta);
522 // *** Find X using the reversed table ***
523 G4double intx=inti+(inta-inti)*G4UniformRand();
524 G4int intc=static_cast<int>(intx);
525 if(intc<0) intc=0;
526 if(intc>bQ2) intc=bQ2; // If it is more than max, then the BAD extrapolation
527 G4double dint=intx-intc;
528 G4double mX=Xl[intc];
529 G4double X=mX+dint*(Xl[intc+1]-mX);
530 G4double Q2=std::pow(X,pconv)-1.;
531 return Q2*GeV*GeV;
532}
533
534// Randomize Q2 from neutrino to the scattered electron when scattering is not quasiElastic
536{
537 static const double mpi=.13957018; // charged pi meson mass in GeV
538 static const G4double me=.00051099892;// electron mass in GeV
539 static const G4double me2=me*me; // Squared mass of an electron in GeV^2
540 static const G4double hme2=me2/2; // .5*m_e^2 in GeV^2
541 static const double MN=.931494043; // Nucleon mass (inside nucleus,atomicMassUnit,GeV)
542 static const double MN2=MN*MN; // M_N^2 in GeV^2
543 static const double dMN=MN+MN; // 2*M_N in GeV
544 static const double mcV=(dMN+mpi)*mpi;// constant of W>M+mc cut for Quasi-Elastic
545 static const G4int power=7; // direct power for the magic variable
546 static const G4double pconv=1./power; // conversion power for the magic variable
547 static const G4int nX=21; // #Of point in the Xl table (in GeV^2)
548 static const G4int lX=nX-1; // index of the last in the Xl table
549 static const G4int bX=lX-1; // @@ index of the before last in the Xl table
550 static const G4int nE=20; // #Of point in the El table (in GeV^2)
551 static const G4int bE=nE-1; // index of the last in the El table
552 static const G4int pE=bE-1; // index of the before last in the El table
553 // Reversed table
554 static const G4double X0[nX]={6.14081e-05,
555 .413394, .644455, .843199, 1.02623, 1.20032, 1.36916, 1.53516, 1.70008, 1.86539, 2.03244,
556 2.20256, 2.37723, 2.55818, 2.74762, 2.94857, 3.16550, 3.40582, 3.68379, 4.03589, 4.77419};
557 static const G4double X1[nX]={.00125268,
558 .861178, 1.34230, 1.75605, 2.13704, 2.49936, 2.85072, 3.19611, 3.53921, 3.88308, 4.23049,
559 4.58423, 4.94735, 5.32342, 5.71700, 6.13428, 6.58447, 7.08267, 7.65782, 8.38299, 9.77330};
560 static const G4double X2[nX]={.015694,
561 1.97690, 3.07976, 4.02770, 4.90021, 5.72963, 6.53363, 7.32363, 8.10805, 8.89384, 9.68728,
562 10.4947, 11.3228, 12.1797, 13.0753, 14.0234, 15.0439, 16.1692, 17.4599, 19.0626, 21.7276};
563 static const G4double X3[nX]={.0866877,
564 4.03498, 6.27651, 8.20056, 9.96931, 11.6487, 13.2747, 14.8704, 16.4526, 18.0351, 19.6302,
565 21.2501, 22.9075, 24.6174, 26.3979, 28.2730, 30.2770, 32.4631, 34.9243, 37.8590, 41.9115};
566 static const G4double X4[nX]={.160483,
567 5.73111, 8.88884, 11.5893, 14.0636, 16.4054, 18.6651, 20.8749, 23.0578, 25.2318, 27.4127,
568 29.6152, 31.8540, 34.1452, 36.5074, 38.9635, 41.5435, 44.2892, 47.2638, 50.5732, 54.4265};
569 static const G4double X5[nX]={.0999307,
570 5.25720, 8.11389, 10.5375, 12.7425, 14.8152, 16.8015, 18.7296, 20.6194, 22.4855, 24.3398,
571 26.1924, 28.0527, 29.9295, 31.8320, 33.7699, 35.7541, 37.7975, 39.9158, 42.1290, 44.4649};
572 static const G4double X6[nX]={.0276367,
573 3.53378, 5.41553, 6.99413, 8.41629, 9.74057, 10.9978, 12.2066, 13.3796, 14.5257, 15.6519,
574 16.7636, 17.8651, 18.9603, 20.0527, 21.1453, 22.2411, 23.3430, 24.4538, 25.5765, 26.7148};
575 static const G4double X7[nX]={.00472383,
576 2.08253, 3.16946, 4.07178, 4.87742, 5.62140, 6.32202, 6.99034, 7.63368, 8.25720, 8.86473,
577 9.45921, 10.0430, 10.6179, 11.1856, 11.7475, 12.3046, 12.8581, 13.4089, 13.9577, 14.5057};
578 static const G4double X8[nX]={.000630783,
579 1.22723, 1.85845, 2.37862, 2.84022, 3.26412, 3.66122, 4.03811, 4.39910, 4.74725, 5.08480,
580 5.41346, 5.73457, 6.04921, 6.35828, 6.66250, 6.96250, 7.25884, 7.55197, 7.84232, 8.13037};
581 static const G4double X9[nX]={7.49179e-05,
582 .772574, 1.16623, 1.48914, 1.77460, 2.03586, 2.27983, 2.51069, 2.73118, 2.94322, 3.14823,
583 3.34728, 3.54123, 3.73075, 3.91638, 4.09860, 4.27779, 4.45428, 4.62835, 4.80025, 4.97028};
584 static const G4double XA[nX]={8.43437e-06,
585 .530035, .798454, 1.01797, 1.21156, 1.38836, 1.55313, 1.70876, 1.85712, 1.99956, 2.13704,
586 2.27031, 2.39994, 2.52640, 2.65007, 2.77127, 2.89026, 3.00726, 3.12248, 3.23607, 3.34823};
587 static const G4double XB[nX]={9.27028e-07,
588 .395058, .594211, .756726, .899794, 1.03025, 1.15167, 1.26619, 1.37523, 1.47979, 1.58059,
589 1.67819, 1.77302, 1.86543, 1.95571, 2.04408, 2.13074, 2.21587, 2.29960, 2.38206, 2.46341};
590 static const G4double XC[nX]={1.00807e-07,
591 .316195, .474948, .604251, .717911, .821417, .917635, 1.00829, 1.09452, 1.17712, 1.25668,
592 1.33364, 1.40835, 1.48108, 1.55207, 1.62150, 1.68954, 1.75631, 1.82193, 1.88650, 1.95014};
593 static const G4double XD[nX]={1.09102e-08,
594 .268227, .402318, .511324, .606997, .694011, .774803, .850843, .923097, .992243, 1.05878,
595 1.12309, 1.18546, 1.24613, 1.30530, 1.36313, 1.41974, 1.47526, 1.52978, 1.58338, 1.63617};
596 static const G4double XE[nX]={1.17831e-09,
597 .238351, .356890, .453036, .537277, .613780, .684719, .751405, .814699, .875208, .933374,
598 .989535, 1.04396, 1.09685, 1.14838, 1.19870, 1.24792, 1.29615, 1.34347, 1.38996, 1.43571};
599 static const G4double XF[nX]={1.27141e-10,
600 .219778, .328346, .416158, .492931, .562525, .626955, .687434, .744761, .799494, .852046,
601 .902729, .951786, .999414, 1.04577, 1.09099, 1.13518, 1.17844, 1.22084, 1.26246, 1.30338};
602 static const G4double XG[nX]={1.3713e-11,
603 .208748, .310948, .393310, .465121, .530069, .590078, .646306, .699515, .750239, .798870,
604 .845707, .890982, .934882, .977559, 1.01914, 1.05973, 1.09941, 1.13827, 1.17637, 1.21379};
605 static const G4double XH[nX]={1.47877e-12,
606 .203089, .301345, .380162, .448646, .510409, .567335, .620557, .670820, .718647, .764421,
607 .808434, .850914, .892042, .931967, .970812, 1.00868, 1.04566, 1.08182, 1.11724, 1.15197};
608 static const G4double XI[nX]={1.59454e-13,
609 .201466, .297453, .374007, .440245, .499779, .554489, .605506, .653573, .699213, .742806,
610 .784643, .824952, .863912, .901672, .938353, .974060, 1.00888, 1.04288, 1.07614, 1.10872};
611 static const G4double XJ[nX]={1.71931e-14,
612 .202988, .297870, .373025, .437731, .495658, .548713, .598041, .644395, .688302, .730147,
613 .770224, .808762, .845943, .881916, .916805, .950713, .983728, 1.01592, 1.04737, 1.07813};
614 // Direct table
615 static const G4double Xmin[nE]={X0[0],X1[0],X2[0],X3[0],X4[0],X5[0],X6[0],X7[0],X8[0],
616 X9[0],XA[0],XB[0],XC[0],XD[0],XE[0],XF[0],XG[0],XH[0],XI[0],XJ[0]};
617 static const G4double dX[nE]={
618 (X0[lX]-X0[0])/lX, (X1[lX]-X1[0])/lX, (X2[lX]-X2[0])/lX, (X3[lX]-X3[0])/lX,
619 (X4[lX]-X4[0])/lX, (X5[lX]-X5[0])/lX, (X6[lX]-X6[0])/lX, (X7[lX]-X7[0])/lX,
620 (X8[lX]-X8[0])/lX, (X9[lX]-X9[0])/lX, (XA[lX]-XA[0])/lX, (XB[lX]-XB[0])/lX,
621 (XC[lX]-XC[0])/lX, (XD[lX]-XD[0])/lX, (XE[lX]-XE[0])/lX, (XF[lX]-XF[0])/lX,
622 (XG[lX]-XG[0])/lX, (XH[lX]-XH[0])/lX, (XI[lX]-XI[0])/lX, (XJ[lX]-XJ[0])/lX};
623 static const G4double* Xl[nE]=
624 {X0,X1,X2,X3,X4,X5,X6,X7,X8,X9,XA,XB,XC,XD,XE,XF,XG,XH,XI,XJ};
625 static const G4double I0[nX]={0,
626 .411893, 1.25559, 2.34836, 3.60264, 4.96046, 6.37874, 7.82342, 9.26643, 10.6840, 12.0555,
627 13.3628, 14.5898, 15.7219, 16.7458, 17.6495, 18.4217, 19.0523, 19.5314, 19.8501, 20.0000};
628 static const G4double I1[nX]={0,
629 .401573, 1.22364, 2.28998, 3.51592, 4.84533, 6.23651, 7.65645, 9.07796, 10.4780, 11.8365,
630 13.1360, 14.3608, 15.4967, 16.5309, 17.4516, 18.2481, 18.9102, 19.4286, 19.7946, 20.0000};
631 static const G4double I2[nX]={0,
632 .387599, 1.17339, 2.19424, 3.37090, 4.65066, 5.99429, 7.37071, 8.75427, 10.1232, 11.4586,
633 12.7440, 13.9644, 15.1065, 16.1582, 17.1083, 17.9465, 18.6634, 19.2501, 19.6982, 20.0000};
634 static const G4double I3[nX]={0,
635 .366444, 1.09391, 2.04109, 3.13769, 4.33668, 5.60291, 6.90843, 8.23014, 9.54840, 10.8461,
636 12.1083, 13.3216, 14.4737, 15.5536, 16.5512, 17.4573, 18.2630, 18.9603, 19.5417, 20.0000};
637 static const G4double I4[nX]={0,
638 .321962, .959681, 1.79769, 2.77753, 3.85979, 5.01487, 6.21916, 7.45307, 8.69991, 9.94515,
639 11.1759, 12.3808, 13.5493, 14.6720, 15.7402, 16.7458, 17.6813, 18.5398, 19.3148, 20.0000};
640 static const G4double I5[nX]={0,
641 .257215, .786302, 1.49611, 2.34049, 3.28823, 4.31581, 5.40439, 6.53832, 7.70422, 8.89040,
642 10.0865, 11.2833, 12.4723, 13.6459, 14.7969, 15.9189, 17.0058, 18.0517, 19.0515, 20.0000};
643 static const G4double I6[nX]={0,
644 .201608, .638914, 1.24035, 1.97000, 2.80354, 3.72260, 4.71247, 5.76086, 6.85724, 7.99243,
645 9.15826, 10.3474, 11.5532, 12.7695, 13.9907, 15.2117, 16.4275, 17.6337, 18.8258, 20.0000};
646 static const G4double I7[nX]={0,
647 .168110, .547208, 1.07889, 1.73403, 2.49292, 3.34065, 4.26525, 5.25674, 6.30654, 7.40717,
648 8.55196, 9.73492, 10.9506, 12.1940, 13.4606, 14.7460, 16.0462, 17.3576, 18.6767, 20.0000};
649 static const G4double I8[nX]={0,
650 .150652, .497557, .990048, 1.60296, 2.31924, 3.12602, 4.01295, 4.97139, 5.99395, 7.07415,
651 8.20621, 9.38495, 10.6057, 11.8641, 13.1561, 14.4781, 15.8267, 17.1985, 18.5906, 20.0000};
652 static const G4double I9[nX]={0,
653 .141449, .470633, .941304, 1.53053, 2.22280, 3.00639, 3.87189, 4.81146, 5.81837, 6.88672,
654 8.01128, 9.18734, 10.4106, 11.6772, 12.9835, 14.3261, 15.7019, 17.1080, 18.5415, 20.0000};
655 static const G4double IA[nX]={0,
656 .136048, .454593, .912075, 1.48693, 2.16457, 2.93400, 3.78639, 4.71437, 5.71163, 6.77265,
657 7.89252, 9.06683, 10.2916, 11.5631, 12.8780, 14.2331, .625500, 17.0525, 18.5115, 20.0000};
658 static const G4double IB[nX]={0,
659 .132316, .443455, .891741, 1.45656, 2.12399, 2.88352, 3.72674, 4.64660, 5.63711, 6.69298,
660 7.80955, 8.98262, 10.2084, 11.4833, 12.8042, 14.1681, 15.5721, 17.0137, 18.4905, 20.0000};
661 static const G4double IC[nX]={0,
662 .129197, .434161, .874795, 1.43128, 2.09024, 2.84158, 3.67721, 4.59038, 5.57531, 6.62696,
663 7.74084, 8.91291, 10.1395, 11.4173, 12.7432, 14.1143, 15.5280, 16.9817, 18.4731, 20.0000};
664 static const G4double ID[nX]={0,
665 .126079, .424911, .857980, 1.40626, 2.05689, 2.80020, 3.62840, 4.53504, 5.51456, 6.56212,
666 7.67342, 8.84458, 10.0721, 11.3527, 12.6836, 14.0618, 15.4849, 16.9504, 18.4562, 20.0000};
667 static const G4double IE[nX]={0,
668 .122530, .414424, .838964, 1.37801, 2.01931, 2.75363, 3.57356, 4.47293, 5.44644, 6.48949,
669 7.59795, 8.76815, 9.99673, 11.2806, 12.6170, 14.0032, 15.4369, 16.9156, 18.4374, 20.0000};
670 static const G4double IF[nX]={0,
671 .118199, .401651, .815838, 1.34370, 1.97370, 2.69716, 3.50710, 4.39771, 5.36401, 6.40164,
672 7.50673, 8.67581, 9.90572, 11.1936, 12.5367, 13.9326, 15.3790, 16.8737, 18.4146, 20.0000};
673 static const G4double IG[nX]={0,
674 .112809, .385761, .787075, 1.30103, 1.91700, 2.62697, 3.42451, 4.30424, 5.26158, 6.29249,
675 7.39341, 8.56112, 9.79269, 11.0855, 12.4369, 13.8449, 15.3071, 16.8216, 18.3865, 20.0000};
676 static const G4double IH[nX]={0,
677 .106206, .366267, .751753, 1.24859, 1.84728, 2.54062, 3.32285, .189160, 5.13543, 6.15804,
678 7.25377, 8.41975, 9.65334, 10.9521, 12.3139, 13.7367, 15.2184, 16.7573, 18.3517, 20.0000};
679 static const G4double II[nX]={0,
680 .098419, .343194, .709850, 1.18628, 1.76430, 2.43772, 3.20159, 4.05176, 4.98467, 5.99722,
681 7.08663, 8.25043, 9.48633, 10.7923, 12.1663, 13.6067, 15.1118, 16.6800, 18.3099, 20.0000};
682 static const G4double IJ[nX]={0,
683 .089681, .317135, .662319, 1.11536, 1.66960, 2.32002, 3.06260, 3.89397, 4.81126, 5.81196,
684 6.89382, 8.05483, 9.29317, 10.6072, 11.9952, 13.4560, 14.9881, 16.5902, 18.2612, 20.0000};
685 static const G4double* Il[nE]=
686 {I0,I1,I2,I3,I4,I5,I6,I7,I8,I9,IA,IB,IC,ID,IE,IF,IG,IH,II,IJ};
687 static const G4double lE[nE]={
688-1.98842,-1.58049,-1.17256,-.764638,-.356711, .051215, .459141, .867068, 1.27499, 1.68292,
689 2.09085, 2.49877, 2.90670, 3.31463, 3.72255, 4.13048, 4.53840, 4.94633, 5.35426, 5.76218};
690 static const G4double lEmi=lE[0];
691 static const G4double lEma=lE[nE-1];
692 static const G4double dlE=(lEma-lEmi)/bE;
693 //***************************************************************************************
694 G4double Enu=lastE; // Get energy of the last calculated cross-section
695 G4double lEn=std::log(Enu); // log(E) for interpolation
696 G4double rE=(lEn-lEmi)/dlE; // Position of the energy
697 G4int fE=static_cast<int>(rE); // Left bin for interpolation
698 if(fE<0) fE=0;
699 if(fE>pE)fE=pE;
700 G4int sE=fE+1; // Right bin for interpolation
701 G4double dE=rE-fE; // relative log shift from the left bin
702 G4double dEnu=Enu+Enu; // doubled energy of nu/anu
703 G4double Enu2=Enu*Enu; // squared energy of nu/anu
704 G4double Ee=Enu-me; // Free Energy of neutrino/anti-neutrino
705 G4double ME=Enu*MN; // M*E
706 G4double dME=ME+ME; // 2*M*E
707 G4double dEMN=(dEnu+MN)*ME;
708 G4double MEm=ME-hme2;
709 G4double sqE=Enu*std::sqrt(MEm*MEm-me2*MN2);
710 G4double E2M=MN*Enu2-(Enu+MN)*hme2;
711 G4double ymax=(E2M+sqE)/dEMN;
712 G4double ymin=(E2M-sqE)/dEMN;
713 G4double rmin=1.-ymin;
714 G4double rhm2E=hme2/Enu2;
715 G4double Q2mi=(Enu2+Enu2)*(rmin-rhm2E-std::sqrt(rmin*rmin-rhm2E-rhm2E)); // Q2_min(E_nu)
716 G4double Q2ma=dME*ymax; // Q2_max(E_nu)
717 G4double Q2nq=Ee*dMN-mcV;
718 if(Q2ma>Q2nq) Q2ma=Q2nq; // Correction for Non Quasi Elastic
719 // --- now r_min=Q2mi/Q2ma and r_max=1.; when r is randomized -> Q2=r*Q2ma ---
720 G4double Rmi=Q2mi/Q2ma;
721 G4double shift=1.+.9673/(1.+.323/Enu/Enu)/std::pow(Enu,.78); //@@ different for anti-nu
722 // --- E-interpolation must be done in a log scale ---
723 G4double Xmi=std::pow((shift-Rmi),power);// X_min(E_nu)
724 G4double Xma=std::pow((shift-1.),power); // X_max(E_nu)
725 // Find the integral values integ(Xmi) & integ(Xma) using the direct table
726 G4double idX=dX[fE]+dE*(dX[sE]-dX[fE]); // interpolated X step
727 G4double iXmi=Xmin[fE]+dE*(Xmin[sE]-Xmin[fE]); // interpolated X minimum
728 G4double rXi=(Xmi-iXmi)/idX;
729 G4int iXi=static_cast<int>(rXi);
730 if(iXi<0) iXi=0;
731 if(iXi>bX) iXi=bX;
732 G4double dXi=rXi-iXi;
733 G4double bntil=Il[fE][iXi];
734 G4double intil=bntil+dXi*(Il[fE][iXi+1]-bntil);
735 G4double bntir=Il[sE][iXi];
736 G4double intir=bntir+dXi*(Il[sE][iXi+1]-bntir);
737 G4double inti=intil+dE*(intir-intil);// interpolated begin of the integral
738 //
739 G4double rXa=(Xma-iXmi)/idX;
740 G4int iXa=static_cast<int>(rXa);
741 if(iXa<0) iXa=0;
742 if(iXa>bX) iXa=bX;
743 G4double dXa=rXa-iXa;
744 G4double bntal=Il[fE][iXa];
745 G4double intal=bntal+dXa*(Il[fE][iXa+1]-bntal);
746 G4double bntar=Il[sE][iXa];
747 G4double intar=bntar+dXa*(Il[sE][iXa+1]-bntar);
748 G4double inta=intal+dE*(intar-intal);// interpolated end of the integral
749 //
750 // *** Find X using the reversed table ***
751 G4double intx=inti+(inta-inti)*G4UniformRand();
752 G4int intc=static_cast<int>(intx);
753 if(intc<0) intc=0;
754 if(intc>bX) intc=bX;
755 G4double dint=intx-intc;
756 G4double mXl=Xl[fE][intc];
757 G4double Xlb=mXl+dint*(Xl[fE][intc+1]-mXl);
758 G4double mXr=Xl[sE][intc];
759 G4double Xrb=mXr+dint*(Xl[sE][intc+1]-mXr);
760 G4double X=Xlb+dE*(Xrb-Xlb); // interpolated X value
761 G4double R=shift-std::pow(X,pconv);
762 G4double Q2=R*Q2ma;
763 return Q2*GeV*GeV;
764}
765
766// It returns a fraction of the direct interaction of the neutrino with quark-partons
768{
769 G4double f=Q2/4.62;
770 G4double ff=f*f;
771 G4double r=ff*ff;
772 G4double s_value=std::pow((1.+.6/Q2),(-1.-(1.+r)/(12.5+r/.3)));
773 //@@ It is the same for nu/anu, but for nu it is a bit less, and for anu a bit more (par)
774 return 1.-s_value*(1.-s_value/2);
775}
776
777// #of quark-partons in the nonperturbative phase space is the same for neut and anti-neut
779{
780 return 3.+.3581*std::log(1.+Q2/.04); // a#of partons in the nonperturbative phase space
781}
782
783// This class can provide only virtual exchange pi+ (a substitute for W+ boson)
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cerr
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
G4double CalculateCrossSection(G4bool CS, G4int F, G4int I, G4int PDG, G4int Z, G4int N, G4double Momentum)
virtual G4double GetCrossSection(G4bool fCS, G4double pMom, G4int tgZ, G4int tgN, G4int pPDG=0)
G4double ThresholdEnergy(G4int Z, G4int N, G4int PDG=12)
static G4VQCrossSection * GetPointer()
static G4double tolerance