Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4TwistTrapAlphaSide.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29//
30// --------------------------------------------------------------------
31// GEANT 4 class source file
32//
33//
34// G4TwistTrapAlphaSide.cc
35//
36// Author:
37//
38// 18/03/2005 - O.Link ([email protected])
39//
40// --------------------------------------------------------------------
41
42#include <cmath>
43
47
48//=====================================================================
49//* constructors ------------------------------------------------------
50
53 G4double PhiTwist, // twist angle
54 G4double pDz, // half z lenght
55 G4double pTheta, // direction between end planes
56 G4double pPhi, // by polar and azimutal angles
57 G4double pDy1, // half y length at -pDz
58 G4double pDx1, // half x length at -pDz,-pDy
59 G4double pDx2, // half x length at -pDz,+pDy
60 G4double pDy2, // half y length at +pDz
61 G4double pDx3, // half x length at +pDz,-pDy
62 G4double pDx4, // half x length at +pDz,+pDy
63 G4double pAlph, // tilt angle at +pDz
64 G4double AngleSide // parity
65 )
66 : G4VTwistSurface(name)
67{
68 fAxis[0] = kYAxis; // in local coordinate system
69 fAxis[1] = kZAxis;
70 fAxisMin[0] = -kInfinity ; // Y Axis boundary
71 fAxisMax[0] = kInfinity ; // depends on z !!
72 fAxisMin[1] = -pDz ; // Z Axis boundary
73 fAxisMax[1] = pDz ;
74
75 fDx1 = pDx1 ;
76 fDx2 = pDx2 ;
77 fDx3 = pDx3 ;
78 fDx4 = pDx4 ;
79
80 fDy1 = pDy1 ;
81 fDy2 = pDy2 ;
82
83 fDz = pDz ;
84
85 fAlph = pAlph ;
86 fTAlph = std::tan(fAlph) ;
87
88 fTheta = pTheta ;
89 fPhi = pPhi ;
90
91 // precalculate frequently used parameters
92 fDx4plus2 = fDx4 + fDx2 ;
93 fDx4minus2 = fDx4 - fDx2 ;
94 fDx3plus1 = fDx3 + fDx1 ;
95 fDx3minus1 = fDx3 - fDx1 ;
96 fDy2plus1 = fDy2 + fDy1 ;
97 fDy2minus1 = fDy2 - fDy1 ;
98
99 fa1md1 = 2*fDx2 - 2*fDx1 ;
100 fa2md2 = 2*fDx4 - 2*fDx3 ;
101
102 fPhiTwist = PhiTwist ; // dphi
103 fAngleSide = AngleSide ; // 0,90,180,270 deg
104
105 fdeltaX = 2 * fDz * std::tan(fTheta) * std::cos(fPhi);
106 // dx in surface equation
107 fdeltaY = 2 * fDz * std::tan(fTheta) * std::sin(fPhi);
108 // dy in surface equation
109
110 fRot.rotateZ( AngleSide ) ;
111
112 fTrans.set(0, 0, 0); // No Translation
113 fIsValidNorm = false;
114
115 SetCorners() ;
116 SetBoundaries() ;
117
118}
119
120
121//=====================================================================
122//* Fake default constructor ------------------------------------------
123
125 : G4VTwistSurface(a), fTheta(0.), fPhi(0.), fDy1(0.), fDx1(0.), fDx2(0.),
126 fDy2(0.), fDx3(0.), fDx4(0.), fDz(0.), fAlph(0.), fTAlph(0.), fPhiTwist(0.),
127 fAngleSide(0.), fDx4plus2(0.), fDx4minus2(0.), fDx3plus1(0.), fDx3minus1(0.),
128 fDy2plus1(0.), fDy2minus1(0.), fa1md1(0.), fa2md2(0.), fdeltaX(0.),
129 fdeltaY(0.)
130{
131}
132
133
134//=====================================================================
135//* destructor --------------------------------------------------------
136
138{
139}
140
141
142//=====================================================================
143//* GetNormal ---------------------------------------------------------
144
147 G4bool isGlobal)
148{
149 // GetNormal returns a normal vector at a surface (or very close
150 // to surface) point at tmpxx.
151 // If isGlobal=true, it returns the normal in global coordinate.
152 //
153
154 G4ThreeVector xx;
155 if (isGlobal)
156 {
157 xx = ComputeLocalPoint(tmpxx);
158 if ((xx - fCurrentNormal.p).mag() < 0.5 * kCarTolerance)
159 {
161 }
162 }
163 else
164 {
165 xx = tmpxx;
166 if (xx == fCurrentNormal.p)
167 {
168 return fCurrentNormal.normal;
169 }
170 }
171
172 G4double phi ;
173 G4double u ;
174
175 GetPhiUAtX(xx,phi,u) ; // phi,u for point xx close to surface
176
177 G4ThreeVector normal = NormAng(phi,u) ; // the normal vector at phi,u
178
179#ifdef G4TWISTDEBUG
180 G4cout << "normal vector = " << normal << G4endl ;
181 G4cout << "phi = " << phi << " , u = " << u << G4endl ;
182#endif
183
184 if (isGlobal)
185 {
187 }
188 else
189 {
190 fCurrentNormal.normal = normal.unit();
191 }
192
193 return fCurrentNormal.normal;
194}
195
196//=====================================================================
197//* DistanceToSurface -------------------------------------------------
198
199G4int
201 const G4ThreeVector &gv,
202 G4ThreeVector gxx[],
203 G4double distance[],
204 G4int areacode[],
205 G4bool isvalid[],
206 EValidate validate)
207{
208 static const G4double ctol = 0.5 * kCarTolerance;
209 static const G4double pihalf = pi/2 ;
210
211 G4bool IsParallel = false ;
212 G4bool IsConverged = false ;
213
214 G4int nxx = 0 ; // number of physical solutions
215
216 fCurStatWithV.ResetfDone(validate, &gp, &gv);
217
218 if (fCurStatWithV.IsDone())
219 {
220 for (register int i=0; i<fCurStatWithV.GetNXX(); i++)
221 {
222 gxx[i] = fCurStatWithV.GetXX(i);
223 distance[i] = fCurStatWithV.GetDistance(i);
224 areacode[i] = fCurStatWithV.GetAreacode(i);
225 isvalid[i] = fCurStatWithV.IsValid(i);
226 }
227 return fCurStatWithV.GetNXX();
228 }
229 else // initialise
230 {
231 for (register int j=0; j<G4VSURFACENXX ; j++)
232 {
233 distance[j] = kInfinity;
234 areacode[j] = sOutside;
235 isvalid[j] = false;
236 gxx[j].set(kInfinity, kInfinity, kInfinity);
237 }
238 }
239
242
243#ifdef G4TWISTDEBUG
244 G4cout << "Local point p = " << p << G4endl ;
245 G4cout << "Local direction v = " << v << G4endl ;
246#endif
247
248 G4double phi,u ; // parameters
249
250 // temporary variables
251
252 G4double tmpdist = kInfinity ;
253 G4ThreeVector tmpxx;
254 G4int tmpareacode = sOutside ;
255 G4bool tmpisvalid = false ;
256
257 std::vector<Intersection> xbuf ;
258 Intersection xbuftmp ;
259
260 // prepare some variables for the intersection finder
261
262 G4double L = 2*fDz ;
263
264 G4double phixz = fPhiTwist * ( p.x() * v.z() - p.z() * v.x() ) ;
265 G4double phiyz = fPhiTwist * ( p.y() * v.z() - p.z() * v.y() ) ;
266
267
268 // special case vz = 0
269
270 if ( v.z() == 0. )
271 {
272 if ( std::fabs(p.z()) <= L ) // intersection possible in z
273 {
274 phi = p.z() * fPhiTwist / L ; // phi is determined by the z-position
275 u = (fDy1*(4*(-(fdeltaY*phi*v.x()) + fPhiTwist*p.y()*v.x()
276 + fdeltaX*phi*v.y() - fPhiTwist*p.x()*v.y())
277 + ((fDx3plus1 + fDx4plus2)*fPhiTwist
278 + 2*(fDx3minus1 + fDx4minus2)*phi)
279 *(v.y()*std::cos(phi) - v.x()*std::sin(phi))))
280 /(fPhiTwist*(4*fDy1* v.x() - (fa1md1 + 4*fDy1*fTAlph)*v.y())
281 *std::cos(phi) + fPhiTwist*(fa1md1*v.x()
282 + 4*fDy1*(fTAlph*v.x() + v.y()))*std::sin(phi));
283 xbuftmp.phi = phi ;
284 xbuftmp.u = u ;
285 xbuftmp.areacode = sOutside ;
286 xbuftmp.distance = kInfinity ;
287 xbuftmp.isvalid = false ;
288
289 xbuf.push_back(xbuftmp) ; // store it to xbuf
290 }
291 else // no intersection possible
292 {
293 distance[0] = kInfinity;
294 gxx[0].set(kInfinity,kInfinity,kInfinity);
295 isvalid[0] = false ;
296 areacode[0] = sOutside ;
297 fCurStatWithV.SetCurrentStatus(0, gxx[0], distance[0],
298 areacode[0], isvalid[0],
299 0, validate, &gp, &gv);
300 return 0;
301 } // end std::fabs(p.z() <= L
302 } // end v.z() == 0
303 else // general solution for non-zero vz
304 {
305
306 G4double c[8],srd[7],si[7] ;
307
308 c[7] = 57600*
309 fDy1*(fa1md1*phiyz +
310 fDy1*(-4*phixz + 4*fTAlph*phiyz
311 + (fDx3plus1 + fDx4plus2)*fPhiTwist*v.z())) ;
312 c[6] = -57600*
313 fDy1*(4*fDy1*(phiyz + 2*fDz*v.x() + fTAlph*(phixz - 2*fDz*v.y()))
314 - 2*fDy1*(2*fdeltaX + fDx3minus1 + fDx4minus2
315 - 2*fdeltaY*fTAlph)*v.z()
316 + fa1md1*(phixz - 2*fDz*v.y() + fdeltaY*v.z()));
317 c[5] = 4800*
318 fDy1*(fa1md1*(-5*phiyz - 24*fDz*v.x() + 12*fdeltaX*v.z()) +
319 fDy1*(20*phixz - 4*(5*fTAlph*phiyz + 24*fDz*fTAlph*v.x()
320 + 24*fDz*v.y()) + (48*fdeltaY + (fDx3plus1 + fDx4plus2)
321 *fPhiTwist + 48*fdeltaX*fTAlph)*v.z()));
322 c[4] = 4800*
323 fDy1*(fa1md1*(phixz - 10*fDz*v.y() + 5*fdeltaY*v.z())
324 + 2*fDy1*(2*phiyz + 20*fDz*v.x()
325 + (-10*fdeltaX + fDx3minus1 + fDx4minus2)*v.z()
326 + 2*fTAlph*(phixz - 10*fDz*v.y() + 5*fdeltaY*v.z())));
327 c[3] = -96*
328 fDy1*(-(fa1md1*(phiyz + 100*fDz*v.x() - 50*fdeltaX*v.z()))
329 + fDy1*(4*phixz - 400*fDz*v.y()
330 + (200*fdeltaY - (fDx3plus1 + fDx4plus2)*fPhiTwist)*v.z()
331 - 4*fTAlph*(phiyz + 100*fDz*v.x() - 50*fdeltaX*v.z())));
332 c[2] = 32*
333 fDy1*(4*fDy1*(7*fTAlph*phixz + 7*phiyz - 6*fDz*v.x() + 6*fDz*fTAlph*v.y())
334 + 6*fDy1*(2*fdeltaX+fDx3minus1+fDx4minus2-2*fdeltaY*fTAlph)*v.z()
335 + fa1md1*(7*phixz + 6*fDz*v.y() - 3*fdeltaY*v.z()));
336 c[1] = -8*
337 fDy1*(fa1md1*(-9*phiyz - 56*fDz*v.x() + 28*fdeltaX*v.z())
338 + 4*fDy1*(9*phixz - 9*fTAlph*phiyz - 56*fDz*fTAlph*v.x()
339 - 56*fDz*v.y() + 28*(fdeltaY + fdeltaX*fTAlph)*v.z()));
340 c[0] = 72*
341 fDy1*(fa1md1*(2*fDz*v.y() - fdeltaY*v.z())
342 + fDy1*(-8*fDz*v.x() + 8*fDz*fTAlph*v.y()
343 + 4*fdeltaX*v.z() - 4*fdeltaY*fTAlph*v.z()));
344
345#ifdef G4TWISTDEBUG
346 G4cout << "coef = " << c[0] << " "
347 << c[1] << " "
348 << c[2] << " "
349 << c[3] << " "
350 << c[4] << " "
351 << c[5] << " "
352 << c[6] << " "
353 << c[7] << G4endl ;
354#endif
355
356 G4JTPolynomialSolver trapEq ;
357 G4int num = trapEq.FindRoots(c,7,srd,si);
358
359 for (register int i = 0 ; i<num ; i++ ) // loop over all math solutions
360 {
361 if ( si[i]==0.0 ) // only real solutions
362 {
363#ifdef G4TWISTDEBUG
364 G4cout << "Solution " << i << " : " << srd[i] << G4endl ;
365#endif
366 phi = std::fmod(srd[i] , pihalf) ;
367 u = (fDy1*(4*(phiyz + 2*fDz*phi*v.y() - fdeltaY*phi*v.z())
368 - ((fDx3plus1 + fDx4plus2)*fPhiTwist
369 + 2*(fDx3minus1 + fDx4minus2)*phi)*v.z()*std::sin(phi)))
370 /(fPhiTwist*v.z()*(4*fDy1*std::cos(phi)
371 + (fa1md1 + 4*fDy1*fTAlph)*std::sin(phi)));
372 xbuftmp.phi = phi ;
373 xbuftmp.u = u ;
374 xbuftmp.areacode = sOutside ;
375 xbuftmp.distance = kInfinity ;
376 xbuftmp.isvalid = false ;
377
378 xbuf.push_back(xbuftmp) ; // store it to xbuf
379
380#ifdef G4TWISTDEBUG
381 G4cout << "solution " << i << " = " << phi << " , " << u << G4endl ;
382#endif
383 } // end if real solution
384 } // end loop i
385 } // end general case
386
387 nxx = xbuf.size() ; // save the number of solutions
388
389 G4ThreeVector xxonsurface ; // point on surface
390 G4ThreeVector surfacenormal ; // normal vector
391 G4double deltaX; // distance between intersection point and point on surface
392 G4double theta; // angle between track and surfacenormal
393 G4double factor; // a scaling factor
394 G4int maxint=30; // number of iterations
395
396 for ( register size_t k = 0 ; k<xbuf.size() ; k++ )
397 {
398#ifdef G4TWISTDEBUG
399 G4cout << "Solution " << k << " : "
400 << "reconstructed phiR = " << xbuf[k].phi
401 << ", uR = " << xbuf[k].u << G4endl ;
402#endif
403
404 phi = xbuf[k].phi ; // get the stored values for phi and u
405 u = xbuf[k].u ;
406
407 IsConverged = false ; // no convergence at the beginning
408
409 for ( register int i = 1 ; i<maxint ; i++ )
410 {
411 xxonsurface = SurfacePoint(phi,u) ;
412 surfacenormal = NormAng(phi,u) ;
413
414 tmpdist = DistanceToPlaneWithV(p, v, xxonsurface, surfacenormal, tmpxx);
415 deltaX = ( tmpxx - xxonsurface ).mag() ;
416 theta = std::fabs(std::acos(v*surfacenormal) - pihalf) ;
417 if ( theta < 0.001 )
418 {
419 factor = 50 ;
420 IsParallel = true ;
421 }
422 else
423 {
424 factor = 1 ;
425 }
426
427#ifdef G4TWISTDEBUG
428 G4cout << "Step i = " << i << ", distance = " << tmpdist
429 << ", " << deltaX << G4endl ;
430 G4cout << "X = " << tmpxx << G4endl ;
431#endif
432
433 GetPhiUAtX(tmpxx, phi, u) ;
434 // the new point xx is accepted and phi/u replaced
435
436#ifdef G4TWISTDEBUG
437 G4cout << "approximated phi = " << phi << ", u = " << u << G4endl ;
438#endif
439
440 if ( deltaX <= factor*ctol ) { IsConverged = true ; break ; }
441
442 } // end iterative loop (i)
443
444 if ( std::fabs(tmpdist)<ctol ) { tmpdist = 0 ; }
445
446#ifdef G4TWISTDEBUG
447 G4cout << "refined solution " << phi << " , " << u << G4endl ;
448 G4cout << "distance = " << tmpdist << G4endl ;
449 G4cout << "local X = " << tmpxx << G4endl ;
450#endif
451
452 tmpisvalid = false ; // init
453
454 if ( IsConverged )
455 {
456 if (validate == kValidateWithTol)
457 {
458 tmpareacode = GetAreaCode(tmpxx);
459 if (!IsOutside(tmpareacode))
460 {
461 if (tmpdist >= 0) tmpisvalid = true;
462 }
463 }
464 else if (validate == kValidateWithoutTol)
465 {
466 tmpareacode = GetAreaCode(tmpxx, false);
467 if (IsInside(tmpareacode))
468 {
469 if (tmpdist >= 0) { tmpisvalid = true; }
470 }
471 }
472 else // kDontValidate
473 {
474 G4Exception("G4TwistTrapAlphaSide::DistanceToSurface()",
475 "GeomSolids0001", FatalException,
476 "Feature NOT implemented !");
477 }
478 }
479 else
480 {
481 tmpdist = kInfinity; // no convergence after 10 steps
482 tmpisvalid = false ; // solution is not vaild
483 }
484
485 // store the found values
486 //
487 xbuf[k].xx = tmpxx ;
488 xbuf[k].distance = tmpdist ;
489 xbuf[k].areacode = tmpareacode ;
490 xbuf[k].isvalid = tmpisvalid ;
491
492 } // end loop over physical solutions (variable k)
493
494 std::sort(xbuf.begin() , xbuf.end(), DistanceSort ) ; // sorting
495
496#ifdef G4TWISTDEBUG
497 G4cout << G4endl << "list xbuf after sorting : " << G4endl ;
498 G4cout << G4endl << G4endl ;
499#endif
500
501 // erase identical intersection (within kCarTolerance)
502 //
503 xbuf.erase( std::unique(xbuf.begin(), xbuf.end() , EqualIntersection ),
504 xbuf.end() );
505
506
507 // add guesses
508 //
509 G4int nxxtmp = xbuf.size() ;
510
511 if ( nxxtmp<2 || IsParallel ) // positive end
512 {
513
514#ifdef G4TWISTDEBUG
515 G4cout << "add guess at +z/2 .. " << G4endl ;
516#endif
517
518 phi = fPhiTwist/2 ;
519 u = 0 ;
520
521 xbuftmp.phi = phi ;
522 xbuftmp.u = u ;
523 xbuftmp.areacode = sOutside ;
524 xbuftmp.distance = kInfinity ;
525 xbuftmp.isvalid = false ;
526
527 xbuf.push_back(xbuftmp) ; // store it to xbuf
528
529#ifdef G4TWISTDEBUG
530 G4cout << "add guess at -z/2 .. " << G4endl ;
531#endif
532
533 phi = -fPhiTwist/2 ;
534 u = 0 ;
535
536 xbuftmp.phi = phi ;
537 xbuftmp.u = u ;
538 xbuftmp.areacode = sOutside ;
539 xbuftmp.distance = kInfinity ;
540 xbuftmp.isvalid = false ;
541
542 xbuf.push_back(xbuftmp) ; // store it to xbuf
543
544 for ( register size_t k = nxxtmp ; k<xbuf.size() ; k++ )
545 {
546
547#ifdef G4TWISTDEBUG
548 G4cout << "Solution " << k << " : "
549 << "reconstructed phiR = " << xbuf[k].phi
550 << ", uR = " << xbuf[k].u << G4endl ;
551#endif
552
553 phi = xbuf[k].phi ; // get the stored values for phi and u
554 u = xbuf[k].u ;
555
556 IsConverged = false ; // no convergence at the beginning
557
558 for ( register int i = 1 ; i<maxint ; i++ )
559 {
560 xxonsurface = SurfacePoint(phi,u) ;
561 surfacenormal = NormAng(phi,u) ;
562 tmpdist = DistanceToPlaneWithV(p, v, xxonsurface, surfacenormal, tmpxx);
563 deltaX = ( tmpxx - xxonsurface ).mag();
564 theta = std::fabs(std::acos(v*surfacenormal) - pihalf);
565 if ( theta < 0.001 )
566 {
567 factor = 50 ;
568 }
569 else
570 {
571 factor = 1 ;
572 }
573
574#ifdef G4TWISTDEBUG
575 G4cout << "Step i = " << i << ", distance = " << tmpdist
576 << ", " << deltaX << G4endl
577 << "X = " << tmpxx << G4endl ;
578#endif
579
580 GetPhiUAtX(tmpxx, phi, u) ;
581 // the new point xx is accepted and phi/u replaced
582
583#ifdef G4TWISTDEBUG
584 G4cout << "approximated phi = " << phi << ", u = " << u << G4endl ;
585#endif
586
587 if ( deltaX <= factor*ctol ) { IsConverged = true ; break ; }
588
589 } // end iterative loop (i)
590
591 if ( std::fabs(tmpdist)<ctol ) { tmpdist = 0; }
592
593#ifdef G4TWISTDEBUG
594 G4cout << "refined solution " << phi << " , " << u << G4endl ;
595 G4cout << "distance = " << tmpdist << G4endl ;
596 G4cout << "local X = " << tmpxx << G4endl ;
597#endif
598
599 tmpisvalid = false ; // init
600
601 if ( IsConverged )
602 {
603 if (validate == kValidateWithTol)
604 {
605 tmpareacode = GetAreaCode(tmpxx);
606 if (!IsOutside(tmpareacode))
607 {
608 if (tmpdist >= 0) { tmpisvalid = true; }
609 }
610 }
611 else if (validate == kValidateWithoutTol)
612 {
613 tmpareacode = GetAreaCode(tmpxx, false);
614 if (IsInside(tmpareacode))
615 {
616 if (tmpdist >= 0) { tmpisvalid = true; }
617 }
618 }
619 else // kDontValidate
620 {
621 G4Exception("G4TwistedBoxSide::DistanceToSurface()",
622 "GeomSolids0001", FatalException,
623 "Feature NOT implemented !");
624 }
625 }
626 else
627 {
628 tmpdist = kInfinity; // no convergence after 10 steps
629 tmpisvalid = false ; // solution is not vaild
630 }
631
632 // store the found values
633 //
634 xbuf[k].xx = tmpxx ;
635 xbuf[k].distance = tmpdist ;
636 xbuf[k].areacode = tmpareacode ;
637 xbuf[k].isvalid = tmpisvalid ;
638
639 } // end loop over physical solutions
640 } // end less than 2 solutions
641
642 // sort again
643 std::sort(xbuf.begin() , xbuf.end(), DistanceSort ) ; // sorting
644
645 // erase identical intersection (within kCarTolerance)
646 xbuf.erase( std::unique(xbuf.begin(), xbuf.end() , EqualIntersection ) ,
647 xbuf.end() );
648
649#ifdef G4TWISTDEBUG
650 G4cout << G4endl << "list xbuf after sorting : " << G4endl ;
651 G4cout << G4endl << G4endl ;
652#endif
653
654 nxx = xbuf.size() ; // determine number of solutions again.
655
656 for ( register size_t i = 0 ; i<xbuf.size() ; i++ )
657 {
658 distance[i] = xbuf[i].distance;
659 gxx[i] = ComputeGlobalPoint(xbuf[i].xx);
660 areacode[i] = xbuf[i].areacode ;
661 isvalid[i] = xbuf[i].isvalid ;
662
663 fCurStatWithV.SetCurrentStatus(i, gxx[i], distance[i], areacode[i],
664 isvalid[i], nxx, validate, &gp, &gv);
665#ifdef G4TWISTDEBUG
666 G4cout << "element Nr. " << i
667 << ", local Intersection = " << xbuf[i].xx
668 << ", distance = " << xbuf[i].distance
669 << ", u = " << xbuf[i].u
670 << ", phi = " << xbuf[i].phi
671 << ", isvalid = " << xbuf[i].isvalid
672 << G4endl ;
673#endif
674
675 } // end for( i ) loop
676
677#ifdef G4TWISTDEBUG
678 G4cout << "G4TwistTrapAlphaSide finished " << G4endl ;
679 G4cout << nxx << " possible physical solutions found" << G4endl ;
680 for ( G4int k= 0 ; k< nxx ; k++ )
681 {
682 G4cout << "global intersection Point found: " << gxx[k] << G4endl ;
683 G4cout << "distance = " << distance[k] << G4endl ;
684 G4cout << "isvalid = " << isvalid[k] << G4endl ;
685 }
686#endif
687
688 return nxx ;
689}
690
691
692//=====================================================================
693//* DistanceToSurface -------------------------------------------------
694
695G4int
697 G4ThreeVector gxx[],
698 G4double distance[],
699 G4int areacode[])
700{
701 static const G4double ctol = 0.5 * kCarTolerance;
702
704
705 if (fCurStat.IsDone())
706 {
707 for (register int i=0; i<fCurStat.GetNXX(); i++)
708 {
709 gxx[i] = fCurStat.GetXX(i);
710 distance[i] = fCurStat.GetDistance(i);
711 areacode[i] = fCurStat.GetAreacode(i);
712 }
713 return fCurStat.GetNXX();
714 }
715 else // initialize
716 {
717 for (register int i=0; i<G4VSURFACENXX; i++)
718 {
719 distance[i] = kInfinity;
720 areacode[i] = sOutside;
721 gxx[i].set(kInfinity, kInfinity, kInfinity);
722 }
723 }
724
726 G4ThreeVector xx; // intersection point
727 G4ThreeVector xxonsurface ; // interpolated intersection point
728
729 // the surfacenormal at that surface point
730 //
731 G4double phiR = 0 ;
732 G4double uR = 0 ;
733
734 G4ThreeVector surfacenormal ;
735 G4double deltaX, uMax ;
736 G4double halfphi = 0.5*fPhiTwist ;
737
738 for ( register int i = 1 ; i<20 ; i++ )
739 {
740 xxonsurface = SurfacePoint(phiR,uR) ;
741 surfacenormal = NormAng(phiR,uR) ;
742 distance[0] = DistanceToPlane(p,xxonsurface,surfacenormal,xx); // new XX
743 deltaX = ( xx - xxonsurface ).mag() ;
744
745#ifdef G4TWISTDEBUG
746 G4cout << "i = " << i << ", distance = " << distance[0]
747 << ", " << deltaX << G4endl
748 << "X = " << xx << G4endl ;
749#endif
750
751 // the new point xx is accepted and phi/psi replaced
752 //
753 GetPhiUAtX(xx, phiR, uR) ;
754
755 if ( deltaX <= ctol ) { break ; }
756 }
757
758 // check validity of solution ( valid phi,psi )
759
760 uMax = GetBoundaryMax(phiR) ;
761
762 if ( phiR > halfphi ) { phiR = halfphi ; }
763 if ( phiR < -halfphi ) { phiR = -halfphi ; }
764 if ( uR > uMax ) { uR = uMax ; }
765 if ( uR < -uMax ) { uR = -uMax ; }
766
767 xxonsurface = SurfacePoint(phiR,uR) ;
768 distance[0] = ( p - xx ).mag() ;
769 if ( distance[0] <= ctol ) { distance[0] = 0 ; }
770
771 // end of validity
772
773#ifdef G4TWISTDEBUG
774 G4cout << "refined solution " << phiR << " , " << uR << " , " << G4endl ;
775 G4cout << "distance = " << distance[0] << G4endl ;
776 G4cout << "X = " << xx << G4endl ;
777#endif
778
779 G4bool isvalid = true;
780 gxx[0] = ComputeGlobalPoint(xx);
781
782#ifdef G4TWISTDEBUG
783 G4cout << "intersection Point found: " << gxx[0] << G4endl ;
784 G4cout << "distance = " << distance[0] << G4endl ;
785#endif
786
787 fCurStat.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
788 isvalid, 1, kDontValidate, &gp);
789 return 1;
790}
791
792
793//=====================================================================
794//* GetAreaCode -------------------------------------------------------
795
796G4int
797G4TwistTrapAlphaSide::GetAreaCode(const G4ThreeVector &xx, G4bool withTol)
798{
799 // We must use the function in local coordinate system.
800 // See the description of DistanceToSurface(p,v).
801
802 static const G4double ctol = 0.5 * kCarTolerance;
803
804 G4double phi ;
805 G4double yprime ;
806 GetPhiUAtX(xx, phi,yprime ) ;
807
808 G4double fYAxisMax = GetBoundaryMax(phi) ;
809 G4double fYAxisMin = GetBoundaryMin(phi) ;
810
811#ifdef G4TWISTDEBUG
812 G4cout << "GetAreaCode: phi = " << phi << G4endl ;
813 G4cout << "GetAreaCode: yprime = " << yprime << G4endl ;
814 G4cout << "Intervall is " << fYAxisMin << " to " << fYAxisMax << G4endl ;
815#endif
816
817 G4int areacode = sInside;
818
819 if (fAxis[0] == kYAxis && fAxis[1] == kZAxis)
820 {
821 G4int zaxis = 1;
822
823 if (withTol)
824 {
825 G4bool isoutside = false;
826
827 // test boundary of yaxis
828
829 if (yprime < fYAxisMin + ctol)
830 {
831 areacode |= (sAxis0 & (sAxisY | sAxisMin)) | sBoundary;
832 if (yprime <= fYAxisMin - ctol) { isoutside = true; }
833
834 }
835 else if (yprime > fYAxisMax - ctol)
836 {
837 areacode |= (sAxis0 & (sAxisY | sAxisMax)) | sBoundary;
838 if (yprime >= fYAxisMax + ctol) { isoutside = true; }
839 }
840
841 // test boundary of z-axis
842
843 if (xx.z() < fAxisMin[zaxis] + ctol)
844 {
845 areacode |= (sAxis1 & (sAxisZ | sAxisMin));
846
847 if (areacode & sBoundary) // xx is on the corner
848 { areacode |= sCorner; }
849
850 else
851 { areacode |= sBoundary; }
852 if (xx.z() <= fAxisMin[zaxis] - ctol) { isoutside = true; }
853 }
854 else if (xx.z() > fAxisMax[zaxis] - ctol)
855 {
856 areacode |= (sAxis1 & (sAxisZ | sAxisMax));
857
858 if (areacode & sBoundary) // xx is on the corner
859 { areacode |= sCorner; }
860 else
861 { areacode |= sBoundary; }
862 if (xx.z() >= fAxisMax[zaxis] + ctol) { isoutside = true; }
863 }
864
865 // if isoutside = true, clear inside bit.
866 // if not on boundary, add axis information.
867
868 if (isoutside)
869 {
870 G4int tmpareacode = areacode & (~sInside);
871 areacode = tmpareacode;
872 }
873 else if ((areacode & sBoundary) != sBoundary)
874 {
875 areacode |= (sAxis0 & sAxisY) | (sAxis1 & sAxisZ);
876 }
877
878 }
879 else
880 {
881 // boundary of y-axis
882
883 if (yprime < fYAxisMin )
884 {
885 areacode |= (sAxis0 & (sAxisY | sAxisMin)) | sBoundary;
886 }
887 else if (yprime > fYAxisMax)
888 {
889 areacode |= (sAxis0 & (sAxisY | sAxisMax)) | sBoundary;
890 }
891
892 // boundary of z-axis
893
894 if (xx.z() < fAxisMin[zaxis])
895 {
896 areacode |= (sAxis1 & (sAxisZ | sAxisMin));
897 if (areacode & sBoundary) // xx is on the corner
898 { areacode |= sCorner; }
899 else
900 { areacode |= sBoundary; }
901 }
902 else if (xx.z() > fAxisMax[zaxis])
903 {
904 areacode |= (sAxis1 & (sAxisZ | sAxisMax)) ;
905 if (areacode & sBoundary) // xx is on the corner
906 { areacode |= sCorner; }
907 else
908 { areacode |= sBoundary; }
909 }
910
911 if ((areacode & sBoundary) != sBoundary)
912 {
913 areacode |= (sAxis0 & sAxisY) | (sAxis1 & sAxisZ);
914 }
915 }
916 return areacode;
917 }
918 else
919 {
920 G4Exception("G4TwistTrapAlphaSide::GetAreaCode()",
921 "GeomSolids0001", FatalException,
922 "Feature NOT implemented !");
923 }
924 return areacode;
925}
926
927//=====================================================================
928//* SetCorners() ------------------------------------------------------
929
930void G4TwistTrapAlphaSide::SetCorners()
931{
932
933 // Set Corner points in local coodinate.
934
935 if (fAxis[0] == kYAxis && fAxis[1] == kZAxis)
936 {
937
938 G4double x, y, z;
939
940 // corner of Axis0min and Axis1min
941 //
942 x = -fdeltaX/2. + (fDx1 - fDy1*fTAlph)*std::cos(fPhiTwist/2.)
943 - fDy1*std::sin(fPhiTwist/2.);
944 y = -fdeltaY/2. - fDy1*std::cos(fPhiTwist/2.)
945 + (-fDx1 + fDy1*fTAlph)*std::sin(fPhiTwist/2.);
946 z = -fDz ;
947
948 // G4cout << "SetCorners: " << x << ", " << y << ", " << z << G4endl ;
949
950 SetCorner(sC0Min1Min, x, y, z);
951
952 // corner of Axis0max and Axis1min
953 //
954 x = -fdeltaX/2. + (fDx2 + fDy1*fTAlph)*std::cos(fPhiTwist/2.)
955 + fDy1*std::sin(fPhiTwist/2.);
956 y = -fdeltaY/2. + fDy1*std::cos(fPhiTwist/2.)
957 - (fDx2 + fDy1*fTAlph)*std::sin(fPhiTwist/2.);
958 z = -fDz ;
959
960 // G4cout << "SetCorners: " << x << ", " << y << ", " << z << G4endl ;
961
962 SetCorner(sC0Max1Min, x, y, z);
963
964 // corner of Axis0max and Axis1max
965 //
966 x = fdeltaX/2. + (fDx4 + fDy2*fTAlph)*std::cos(fPhiTwist/2.)
967 - fDy2*std::sin(fPhiTwist/2.);
968 y = fdeltaY/2. + fDy2*std::cos(fPhiTwist/2.)
969 + (fDx4 + fDy2*fTAlph)*std::sin(fPhiTwist/2.);
970 z = fDz ;
971
972 // G4cout << "SetCorners: " << x << ", " << y << ", " << z << G4endl ;
973
974 SetCorner(sC0Max1Max, x, y, z);
975
976 // corner of Axis0min and Axis1max
977 x = fdeltaX/2. + (fDx3 - fDy2*fTAlph)*std::cos(fPhiTwist/2.)
978 + fDy2*std::sin(fPhiTwist/2.) ;
979 y = fdeltaY/2. - fDy2*std::cos(fPhiTwist/2.)
980 + (fDx3 - fDy2*fTAlph)*std::sin(fPhiTwist/2.) ;
981 z = fDz ;
982
983 // G4cout << "SetCorners: " << x << ", " << y << ", " << z << G4endl ;
984
985 SetCorner(sC0Min1Max, x, y, z);
986
987 }
988 else
989 {
990 G4Exception("G4TwistTrapAlphaSide::SetCorners()",
991 "GeomSolids0001", FatalException,
992 "Method NOT implemented !");
993 }
994}
995
996//=====================================================================
997//* SetBoundaries() ---------------------------------------------------
998
999void G4TwistTrapAlphaSide::SetBoundaries()
1000{
1001 // Set direction-unit vector of boundary-lines in local coodinate.
1002 //
1003
1004 G4ThreeVector direction;
1005
1006 if (fAxis[0] == kYAxis && fAxis[1] == kZAxis)
1007 {
1008 // sAxis0 & sAxisMin
1009 direction = GetCorner(sC0Min1Max) - GetCorner(sC0Min1Min);
1010 direction = direction.unit();
1011 SetBoundary(sAxis0 & (sAxisY | sAxisMin), direction,
1013
1014 // sAxis0 & sAxisMax
1015 direction = GetCorner(sC0Max1Max) - GetCorner(sC0Max1Min);
1016 direction = direction.unit();
1017 SetBoundary(sAxis0 & (sAxisY | sAxisMax), direction,
1019
1020 // sAxis1 & sAxisMin
1021 direction = GetCorner(sC0Max1Min) - GetCorner(sC0Min1Min);
1022 direction = direction.unit();
1023 SetBoundary(sAxis1 & (sAxisZ | sAxisMin), direction,
1025
1026 // sAxis1 & sAxisMax
1027 direction = GetCorner(sC0Max1Max) - GetCorner(sC0Min1Max);
1028 direction = direction.unit();
1029 SetBoundary(sAxis1 & (sAxisZ | sAxisMax), direction,
1031
1032 }
1033 else
1034 {
1035 G4Exception("G4TwistTrapAlphaSide::SetCorners()",
1036 "GeomSolids0001", FatalException,
1037 "Feature NOT implemented !");
1038 }
1039}
1040
1041//=====================================================================
1042//* GetPhiUAtX --------------------------------------------------------
1043
1044void
1045G4TwistTrapAlphaSide::GetPhiUAtX( G4ThreeVector p, G4double &phi, G4double &u )
1046{
1047 // find closest point XX on surface for a given point p
1048 // X0 is a point on the surface, d is the direction
1049 // ( both for a fixed z = pz)
1050
1051 // phi is given by the z coordinate of p
1052
1053 phi = p.z()/(2*fDz)*fPhiTwist ;
1054 u = (fPhiTwist*(2*fDx1*fDx1 - 2*fDx2*fDx2 - fa1md1*(fDx3 + fDx4)
1055 - 4*(fDx3plus1 + fDx4plus2)*fDy1*fTAlph)
1056 - 2*(2*fDx1*fDx1 - 2*fDx2*fDx2 + fa1md1*(fDx3 + fDx4)
1057 + 4*(fDx3minus1 + fDx4minus2)*fDy1*fTAlph)*phi
1058 - 4*(fa1md1*(fdeltaX*phi - fPhiTwist*p.x())
1059 + 4*fDy1*(fdeltaY*phi + fdeltaX*fTAlph*phi
1060 - fPhiTwist*(fTAlph*p.x() + p.y())))*std::cos(phi)
1061 - 4*(fa1md1*fdeltaY*phi - 4*fdeltaX*fDy1*phi
1062 + 4*fdeltaY*fDy1*fTAlph*phi + 4*fDy1*fPhiTwist*p.x()
1063 - fPhiTwist*(fa1md1 + 4*fDy1*fTAlph)*p.y())*std::sin(phi))
1064 /(fDy1* fPhiTwist*((std::fabs(((fa1md1 + 4*fDy1*fTAlph)*std::cos(phi))
1065 /fDy1 - 4*std::sin(phi)))
1066 *(std::fabs(((fa1md1 + 4*fDy1*fTAlph)*std::cos(phi))
1067 /fDy1 - 4*std::sin(phi)))
1068 + (std::fabs(4*std::cos(phi)
1069 + ((fa1md1 + 4*fDy1*fTAlph)*std::sin(phi))/fDy1))
1070 * (std::fabs(4*std::cos(phi)
1071 + ((fa1md1 + 4*fDy1*fTAlph)*std::sin(phi))/fDy1)))) ;
1072}
1073
1074//=====================================================================
1075//* ProjectPoint ------------------------------------------------------
1076
1078G4TwistTrapAlphaSide::ProjectPoint(const G4ThreeVector &p, G4bool isglobal)
1079{
1080 // Get Rho at p.z() on Hyperbolic Surface.
1081
1082 G4ThreeVector tmpp;
1083 if (isglobal)
1084 {
1085 tmpp = fRot.inverse()*p - fTrans;
1086 }
1087 else
1088 {
1089 tmpp = p;
1090 }
1091
1092 G4double phi ;
1093 G4double u ;
1094
1095 GetPhiUAtX( tmpp, phi, u ) ;
1096 // calculate (phi, u) for a point p close the surface
1097
1098 G4ThreeVector xx = SurfacePoint(phi,u) ;
1099 // transform back to cartesian coordinates
1100
1101 if (isglobal)
1102 {
1103 return (fRot * xx + fTrans);
1104 }
1105 else
1106 {
1107 return xx;
1108 }
1109}
1110
1111//=====================================================================
1112//* GetFacets ---------------------------------------------------------
1113
1114void
1115G4TwistTrapAlphaSide::GetFacets( G4int k, G4int n, G4double xyz[][3],
1116 G4int faces[][4], G4int iside )
1117{
1118
1119 G4double phi ;
1120 G4double b ;
1121
1122 G4double z, u ; // the two parameters for the surface equation
1123 G4ThreeVector p ; // a point on the surface, given by (z,u)
1124
1125 G4int nnode ;
1126 G4int nface ;
1127
1128 // calculate the (n-1)*(k-1) vertices
1129
1130 for ( register int i = 0 ; i<n ; i++ )
1131 {
1132 z = -fDz+i*(2.*fDz)/(n-1) ;
1133 phi = z*fPhiTwist/(2*fDz) ;
1134 b = GetValueB(phi) ;
1135
1136 for ( register int j = 0 ; j<k ; j++ )
1137 {
1138 nnode = GetNode(i,j,k,n,iside) ;
1139 u = -b/2 +j*b/(k-1) ;
1140 p = SurfacePoint(phi,u,true) ; // surface point in global coordinates
1141
1142 xyz[nnode][0] = p.x() ;
1143 xyz[nnode][1] = p.y() ;
1144 xyz[nnode][2] = p.z() ;
1145
1146 if ( i<n-1 && j<k-1 ) // conterclock wise filling
1147 {
1148 nface = GetFace(i,j,k,n,iside) ;
1149 faces[nface][0] = GetEdgeVisibility(i,j,k,n,0,-1)
1150 * (GetNode(i ,j ,k,n,iside)+1) ; // f77 numbering
1151 faces[nface][1] = GetEdgeVisibility(i,j,k,n,1,-1)
1152 * (GetNode(i ,j+1,k,n,iside)+1) ;
1153 faces[nface][2] = GetEdgeVisibility(i,j,k,n,2,-1)
1154 * (GetNode(i+1,j+1,k,n,iside)+1) ;
1155 faces[nface][3] = GetEdgeVisibility(i,j,k,n,3,-1)
1156 * (GetNode(i+1,j ,k,n,iside)+1) ;
1157 }
1158 }
1159 }
1160}
@ FatalException
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
G4bool DistanceSort(const Intersection &a, const Intersection &b)
G4bool EqualIntersection(const Intersection &a, const Intersection &b)
#define G4VSURFACENXX
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
double z() const
Hep3Vector unit() const
double x() const
double y() const
void set(double x, double y, double z)
HepRotation inverse() const
HepRotation & rotateZ(double delta)
Definition: Rotation.cc:92
G4int FindRoots(G4double *op, G4int degree, G4double *zeror, G4double *zeroi)
virtual G4int DistanceToSurface(const G4ThreeVector &gp, const G4ThreeVector &gv, G4ThreeVector gxx[], G4double distance[], G4int areacode[], G4bool isvalid[], EValidate validate=kValidateWithTol)
G4TwistTrapAlphaSide(const G4String &name, G4double PhiTwist, G4double pDz, G4double pTheta, G4double pPhi, G4double pDy1, G4double pDx1, G4double pDx2, G4double pDy2, G4double pDx3, G4double pDx4, G4double pAlph, G4double AngleSide)
virtual G4ThreeVector GetNormal(const G4ThreeVector &xx, G4bool isGlobal=false)
G4int GetAreacode(G4int i) const
G4double GetDistance(G4int i) const
void SetCurrentStatus(G4int i, G4ThreeVector &xx, G4double &dist, G4int &areacode, G4bool &isvalid, G4int nxx, EValidate validate, const G4ThreeVector *p, const G4ThreeVector *v=0)
G4bool IsValid(G4int i) const
G4ThreeVector GetXX(G4int i) const
void ResetfDone(EValidate validate, const G4ThreeVector *p, const G4ThreeVector *v=0)
static const G4int sC0Min1Min
static const G4int sC0Min1Max
G4double DistanceToPlane(const G4ThreeVector &p, const G4ThreeVector &x0, const G4ThreeVector &n0, G4ThreeVector &xx)
G4int GetNode(G4int i, G4int j, G4int m, G4int n, G4int iside)
static const G4int sOutside
G4ThreeVector ComputeGlobalDirection(const G4ThreeVector &lp) const
static const G4int sAxisMax
static const G4int sAxis0
G4int GetFace(G4int i, G4int j, G4int m, G4int n, G4int iside)
G4double fAxisMax[2]
G4RotationMatrix fRot
G4int GetEdgeVisibility(G4int i, G4int j, G4int m, G4int n, G4int number, G4int orientation)
G4ThreeVector ComputeLocalDirection(const G4ThreeVector &gp) const
static const G4int sAxisMin
static const G4int sC0Max1Max
static const G4int sAxis1
G4bool IsInside(G4int areacode, G4bool testbitmode=false) const
G4ThreeVector fTrans
virtual void SetBoundary(const G4int &axiscode, const G4ThreeVector &direction, const G4ThreeVector &x0, const G4int &boundarytype)
G4ThreeVector ComputeLocalPoint(const G4ThreeVector &gp) const
void SetCorner(G4int areacode, G4double x, G4double y, G4double z)
G4ThreeVector GetCorner(G4int areacode) const
static const G4int sBoundary
static const G4int sAxisZ
G4bool IsOutside(G4int areacode) const
G4double fAxisMin[2]
static const G4int sCorner
static const G4int sC0Max1Min
static const G4int sInside
CurrentStatus fCurStatWithV
static const G4int sAxisY
G4double DistanceToPlaneWithV(const G4ThreeVector &p, const G4ThreeVector &v, const G4ThreeVector &x0, const G4ThreeVector &n0, G4ThreeVector &xx)
G4ThreeVector ComputeGlobalPoint(const G4ThreeVector &lp) const
G4SurfCurNormal fCurrentNormal
CurrentStatus fCurStat
@ kYAxis
Definition: geomdefs.hh:54
@ kZAxis
Definition: geomdefs.hh:54
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41