Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ExtrudedSolid.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29//
30// --------------------------------------------------------------------
31// GEANT 4 class source file
32//
33// G4ExtrudedSolid.cc
34//
35// Author: Ivana Hrivnacova, IPN Orsay
36// --------------------------------------------------------------------
37
38#include <set>
39#include <algorithm>
40#include <cmath>
41#include <iomanip>
42
43#include "G4ExtrudedSolid.hh"
45#include "G4SystemOfUnits.hh"
46#include "G4VFacet.hh"
47#include "G4TriangularFacet.hh"
49
50//_____________________________________________________________________________
51
53 std::vector<G4TwoVector> polygon,
54 std::vector<ZSection> zsections)
55 : G4TessellatedSolid(pName),
56 fNv(polygon.size()),
57 fNz(zsections.size()),
58 fPolygon(),
59 fZSections(),
60 fTriangles(),
61 fIsConvex(false),
62 fGeometryType("G4ExtrudedSolid")
63
64{
65 // General constructor
66
67 // First check input parameters
68
69 if ( fNv < 3 )
70 {
71 std::ostringstream message;
72 message << "Number of polygon vertices < 3 - " << pName;
73 G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "GeomSolids0002",
74 FatalErrorInArgument, message);
75 }
76
77 if ( fNz < 2 )
78 {
79 std::ostringstream message;
80 message << "Number of z-sides < 2 - " << pName;
81 G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "GeomSolids0002",
82 FatalErrorInArgument, message);
83 }
84
85 for ( G4int i=0; i<fNz-1; ++i )
86 {
87 if ( zsections[i].fZ > zsections[i+1].fZ )
88 {
89 std::ostringstream message;
90 message << "Z-sections have to be ordered by z value (z0 < z1 < z2...) - "
91 << pName;
92 G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "GeomSolids0002",
93 FatalErrorInArgument, message);
94 }
95 if ( std::fabs( zsections[i+1].fZ - zsections[i].fZ ) < kCarTolerance * 0.5 )
96 {
97 std::ostringstream message;
98 message << "Z-sections with the same z position are not supported - "
99 << pName;
100 G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "GeomSolids0001",
101 FatalException, message);
102 }
103 }
104
105 // Check if polygon vertices are defined clockwise
106 // (the area is positive if polygon vertices are defined anti-clockwise)
107 //
108 G4double area = 0.;
109 for ( G4int i=0; i<fNv; ++i ) {
110 G4int j = i+1;
111 if ( j == fNv ) j = 0;
112 area += 0.5 * ( polygon[i].x()*polygon[j].y() - polygon[j].x()*polygon[i].y());
113 }
114
115 // Copy polygon
116 //
117 if ( area < 0. ) {
118 // Polygon vertices are defined clockwise, we just copy the polygon
119 for ( G4int i=0; i<fNv; ++i ) { fPolygon.push_back(polygon[i]); }
120 }
121 else {
122 // Polygon vertices are defined anti-clockwise, we revert them
123 //G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "GeomSolids1001",
124 // JustWarning,
125 // "Polygon vertices defined anti-clockwise, reverting polygon");
126 for ( G4int i=0; i<fNv; ++i ) { fPolygon.push_back(polygon[fNv-i-1]); }
127 }
128
129
130 // Copy z-sections
131 //
132 for ( G4int i=0; i<fNz; ++i ) { fZSections.push_back(zsections[i]); }
133
134
135 G4bool result = MakeFacets();
136 if (!result)
137 {
138 std::ostringstream message;
139 message << "Making facets failed - " << pName;
140 G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "GeomSolids0003",
141 FatalException, message);
142 }
143 fIsConvex = IsConvex();
144
145
146 ComputeProjectionParameters();
147}
148
149//_____________________________________________________________________________
150
152 std::vector<G4TwoVector> polygon,
153 G4double dz,
154 G4TwoVector off1, G4double scale1,
155 G4TwoVector off2, G4double scale2 )
156 : G4TessellatedSolid(pName),
157 fNv(polygon.size()),
158 fNz(2),
159 fPolygon(),
160 fZSections(),
161 fTriangles(),
162 fIsConvex(false),
163 fGeometryType("G4ExtrudedSolid")
164
165{
166 // Special constructor for solid with 2 z-sections
167
168 // First check input parameters
169 //
170 if ( fNv < 3 )
171 {
172 std::ostringstream message;
173 message << "Number of polygon vertices < 3 - " << pName;
174 G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "GeomSolids0002",
175 FatalErrorInArgument, message);
176 }
177
178 // Check if polygon vertices are defined clockwise
179 // (the area is positive if polygon vertices are defined anti-clockwise)
180
181 G4double area = 0.;
182 for ( G4int i=0; i<fNv; ++i )
183 {
184 G4int j = i+1;
185 if ( j == fNv ) { j = 0; }
186 area += 0.5 * ( polygon[i].x()*polygon[j].y()
187 - polygon[j].x()*polygon[i].y());
188 }
189
190 // Copy polygon
191 //
192 if ( area < 0. )
193 {
194 // Polygon vertices are defined clockwise, we just copy the polygon
195 for ( G4int i=0; i<fNv; ++i ) { fPolygon.push_back(polygon[i]); }
196 }
197 else
198 {
199 // Polygon vertices are defined anti-clockwise, we revert them
200 //G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "GeomSolids1001",
201 // JustWarning,
202 // "Polygon vertices defined anti-clockwise, reverting polygon");
203 for ( G4int i=0; i<fNv; ++i ) { fPolygon.push_back(polygon[fNv-i-1]); }
204 }
205
206 // Copy z-sections
207 //
208 fZSections.push_back(ZSection(-dz, off1, scale1));
209 fZSections.push_back(ZSection( dz, off2, scale2));
210
211 G4bool result = MakeFacets();
212 if (!result)
213 {
214 std::ostringstream message;
215 message << "Making facets failed - " << pName;
216 G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "GeomSolids0003",
217 FatalException, message);
218 }
219 fIsConvex = IsConvex();
220
221 ComputeProjectionParameters();
222}
223
224//_____________________________________________________________________________
225
227 : G4TessellatedSolid(a), fNv(0), fNz(0), fPolygon(), fZSections(),
228 fTriangles(), fIsConvex(false), fGeometryType("G4ExtrudedSolid")
229{
230 // Fake default constructor - sets only member data and allocates memory
231 // for usage restricted to object persistency.
232}
233
234//_____________________________________________________________________________
235
237 : G4TessellatedSolid(rhs), fNv(rhs.fNv), fNz(rhs.fNz),
238 fPolygon(rhs.fPolygon), fZSections(rhs.fZSections),
239 fTriangles(rhs.fTriangles), fIsConvex(rhs.fIsConvex),
240 fGeometryType(rhs.fGeometryType), fKScales(rhs.fKScales),
241 fScale0s(rhs.fScale0s), fKOffsets(rhs.fKOffsets), fOffset0s(rhs.fOffset0s)
242{
243}
244
245
246//_____________________________________________________________________________
247
249{
250 // Check assignment to self
251 //
252 if (this == &rhs) { return *this; }
253
254 // Copy base class data
255 //
257
258 // Copy data
259 //
260 fNv = rhs.fNv; fNz = rhs.fNz;
261 fPolygon = rhs.fPolygon; fZSections = rhs.fZSections;
262 fTriangles = rhs.fTriangles; fIsConvex = rhs.fIsConvex;
263 fGeometryType = rhs.fGeometryType; fKScales = rhs.fKScales;
264 fScale0s = rhs.fScale0s; fKOffsets = rhs.fKOffsets;
265 fOffset0s = rhs.fOffset0s;
266
267 return *this;
268}
269
270//_____________________________________________________________________________
271
273{
274 // Destructor
275}
276
277//_____________________________________________________________________________
278
279void G4ExtrudedSolid::ComputeProjectionParameters()
280{
281 // Compute parameters for point projections p(z)
282 // to the polygon scale & offset:
283 // scale(z) = k*z + scale0
284 // offset(z) = l*z + offset0
285 // p(z) = scale(z)*p0 + offset(z)
286 // p0 = (p(z) - offset(z))/scale(z);
287 //
288
289 for ( G4int iz=0; iz<fNz-1; ++iz)
290 {
291 G4double z1 = fZSections[iz].fZ;
292 G4double z2 = fZSections[iz+1].fZ;
293 G4double scale1 = fZSections[iz].fScale;
294 G4double scale2 = fZSections[iz+1].fScale;
295 G4TwoVector off1 = fZSections[iz].fOffset;
296 G4TwoVector off2 = fZSections[iz+1].fOffset;
297
298 G4double kscale = (scale2 - scale1)/(z2 - z1);
299 G4double scale0 = scale2 - kscale*(z2 - z1)/2.0;
300 G4TwoVector koff = (off2 - off1)/(z2 - z1);
301 G4TwoVector off0 = off2 - koff*(z2 - z1)/2.0;
302
303 fKScales.push_back(kscale);
304 fScale0s.push_back(scale0);
305 fKOffsets.push_back(koff);
306 fOffset0s.push_back(off0);
307 }
308}
309
310
311//_____________________________________________________________________________
312
314{
315 // Shift and scale vertices
316
317 return G4ThreeVector( fPolygon[ind].x() * fZSections[iz].fScale
318 + fZSections[iz].fOffset.x(),
319 fPolygon[ind].y() * fZSections[iz].fScale
320 + fZSections[iz].fOffset.y(), fZSections[iz].fZ);
321}
322
323//_____________________________________________________________________________
324
325
326G4TwoVector G4ExtrudedSolid::ProjectPoint(const G4ThreeVector& point) const
327{
328 // Project point in the polygon scale
329 // scale(z) = k*z + scale0
330 // offset(z) = l*z + offset0
331 // p(z) = scale(z)*p0 + offset(z)
332 // p0 = (p(z) - offset(z))/scale(z);
333
334 // Select projection (z-segment of the solid) according to p.z()
335 //
336 G4int iz = 0;
337 while ( point.z() > fZSections[iz+1].fZ && iz < fNz-2 ) { ++iz; }
338
339 G4double z0 = ( fZSections[iz+1].fZ + fZSections[iz].fZ )/2.0;
340 G4TwoVector p2(point.x(), point.y());
341 G4double pscale = fKScales[iz]*(point.z()-z0) + fScale0s[iz];
342 G4TwoVector poffset = fKOffsets[iz]*(point.z()-z0) + fOffset0s[iz];
343
344 // G4cout << point << " projected to "
345 // << iz << "-th z-segment polygon as "
346 // << (p2 - poffset)/pscale << G4endl;
347
348 // pscale is always >0 as it is an interpolation between two
349 // positive scale values
350 //
351 return (p2 - poffset)/pscale;
352}
353
354//_____________________________________________________________________________
355
356G4bool G4ExtrudedSolid::IsSameLine(G4TwoVector p,
357 G4TwoVector l1, G4TwoVector l2) const
358{
359 // Return true if p is on the line through l1, l2
360
361 if ( l1.x() == l2.x() )
362 {
363 return std::fabs(p.x() - l1.x()) < kCarTolerance * 0.5;
364 }
365
366 return std::fabs (p.y() - l1.y() - ((l2.y() - l1.y())/(l2.x() - l1.x()))
367 *(p.x() - l1.x())) < kCarTolerance * 0.5;
368 }
369
370//_____________________________________________________________________________
371
372G4bool G4ExtrudedSolid::IsSameLineSegment(G4TwoVector p,
373 G4TwoVector l1, G4TwoVector l2) const
374{
375 // Return true if p is on the line through l1, l2 and lies between
376 // l1 and l2
377
378 if ( p.x() < std::min(l1.x(), l2.x()) - kCarTolerance * 0.5 ||
379 p.x() > std::max(l1.x(), l2.x()) + kCarTolerance * 0.5 ||
380 p.y() < std::min(l1.y(), l2.y()) - kCarTolerance * 0.5 ||
381 p.y() > std::max(l1.y(), l2.y()) + kCarTolerance * 0.5 )
382 {
383 return false;
384 }
385
386 return IsSameLine(p, l1, l2);
387}
388
389//_____________________________________________________________________________
390
391G4bool G4ExtrudedSolid::IsSameSide(G4TwoVector p1, G4TwoVector p2,
392 G4TwoVector l1, G4TwoVector l2) const
393{
394 // Return true if p1 and p2 are on the same side of the line through l1, l2
395
396 return ( (p1.x() - l1.x()) * (l2.y() - l1.y())
397 - (l2.x() - l1.x()) * (p1.y() - l1.y()) )
398 * ( (p2.x() - l1.x()) * (l2.y() - l1.y())
399 - (l2.x() - l1.x()) * (p2.y() - l1.y()) ) > 0;
400}
401
402//_____________________________________________________________________________
403
404G4bool G4ExtrudedSolid::IsPointInside(G4TwoVector a, G4TwoVector b,
405 G4TwoVector c, G4TwoVector p) const
406{
407 // Return true if p is inside of triangle abc or on its edges,
408 // else returns false
409
410 // Check extent first
411 //
412 if ( ( p.x() < a.x() && p.x() < b.x() && p.x() < c.x() ) ||
413 ( p.x() > a.x() && p.x() > b.x() && p.x() > c.x() ) ||
414 ( p.y() < a.y() && p.y() < b.y() && p.y() < c.y() ) ||
415 ( p.y() > a.y() && p.y() > b.y() && p.y() > c.y() ) ) return false;
416
417 G4bool inside
418 = IsSameSide(p, a, b, c)
419 && IsSameSide(p, b, a, c)
420 && IsSameSide(p, c, a, b);
421
422 G4bool onEdge
423 = IsSameLineSegment(p, a, b)
424 || IsSameLineSegment(p, b, c)
425 || IsSameLineSegment(p, c, a);
426
427 return inside || onEdge;
428}
429
430//_____________________________________________________________________________
431
433G4ExtrudedSolid::GetAngle(G4TwoVector po, G4TwoVector pa, G4TwoVector pb) const
434{
435 // Return the angle of the vertex in po
436
437 G4TwoVector t1 = pa - po;
438 G4TwoVector t2 = pb - po;
439
440 G4double result = (std::atan2(t1.y(), t1.x()) - std::atan2(t2.y(), t2.x()));
441
442 if ( result < 0 ) result += 2*pi;
443
444 return result;
445}
446
447//_____________________________________________________________________________
448
450G4ExtrudedSolid::MakeDownFacet(G4int ind1, G4int ind2, G4int ind3) const
451{
452 // Create a triangular facet from the polygon points given by indices
453 // forming the down side ( the normal goes in -z)
454
455 std::vector<G4ThreeVector> vertices;
456 vertices.push_back(GetVertex(0, ind1));
457 vertices.push_back(GetVertex(0, ind2));
458 vertices.push_back(GetVertex(0, ind3));
459
460 // first vertex most left
461 //
462 G4ThreeVector cross
463 = (vertices[1]-vertices[0]).cross(vertices[2]-vertices[1]);
464
465 if ( cross.z() > 0.0 )
466 {
467 // vertices ardered clock wise has to be reordered
468
469 // G4cout << "G4ExtrudedSolid::MakeDownFacet: reordering vertices "
470 // << ind1 << ", " << ind2 << ", " << ind3 << G4endl;
471
472 G4ThreeVector tmp = vertices[1];
473 vertices[1] = vertices[2];
474 vertices[2] = tmp;
475 }
476
477 return new G4TriangularFacet(vertices[0], vertices[1],
478 vertices[2], ABSOLUTE);
479}
480
481//_____________________________________________________________________________
482
484G4ExtrudedSolid::MakeUpFacet(G4int ind1, G4int ind2, G4int ind3) const
485{
486 // Creates a triangular facet from the polygon points given by indices
487 // forming the upper side ( z>0 )
488
489 std::vector<G4ThreeVector> vertices;
490 vertices.push_back(GetVertex(fNz-1, ind1));
491 vertices.push_back(GetVertex(fNz-1, ind2));
492 vertices.push_back(GetVertex(fNz-1, ind3));
493
494 // first vertex most left
495 //
496 G4ThreeVector cross
497 = (vertices[1]-vertices[0]).cross(vertices[2]-vertices[1]);
498
499 if ( cross.z() < 0.0 )
500 {
501 // vertices ordered clock wise has to be reordered
502
503 // G4cout << "G4ExtrudedSolid::MakeUpFacet: reordering vertices "
504 // << ind1 << ", " << ind2 << ", " << ind3 << G4endl;
505
506 G4ThreeVector tmp = vertices[1];
507 vertices[1] = vertices[2];
508 vertices[2] = tmp;
509 }
510
511 return new G4TriangularFacet(vertices[0], vertices[1],
512 vertices[2], ABSOLUTE);
513}
514
515//_____________________________________________________________________________
516
517G4bool G4ExtrudedSolid::AddGeneralPolygonFacets()
518{
519 // Decompose polygonal sides in triangular facets
520
521 typedef std::pair < G4TwoVector, G4int > Vertex;
522
523 // Fill one more vector
524 //
525 std::vector< Vertex > verticesToBeDone;
526 for ( G4int i=0; i<fNv; ++i )
527 {
528 verticesToBeDone.push_back(Vertex(fPolygon[i], i));
529 }
530 std::vector< Vertex > ears;
531
532 std::vector< Vertex >::iterator c1 = verticesToBeDone.begin();
533 std::vector< Vertex >::iterator c2 = c1+1;
534 std::vector< Vertex >::iterator c3 = c1+2;
535 while ( verticesToBeDone.size()>2 )
536 {
537
538 // G4cout << "Looking at triangle : "
539 // << c1->second << " " << c2->second
540 // << " " << c3->second << G4endl;
541
542 // skip concave vertices
543 //
544 G4double angle = GetAngle(c2->first, c3->first, c1->first);
545 //G4cout << "angle " << angle << G4endl;
546
547 G4int counter = 0;
548 while ( angle > pi )
549 {
550 // G4cout << "Skipping concave vertex " << c2->second << G4endl;
551
552 // try next three consecutive vertices
553 //
554 c1 = c2;
555 c2 = c3;
556 ++c3;
557 if ( c3 == verticesToBeDone.end() ) { c3 = verticesToBeDone.begin(); }
558
559 // G4cout << "Looking at triangle : "
560 // << c1->second << " " << c2->second
561 // << " " << c3->second << G4endl;
562
563 angle = GetAngle(c2->first, c3->first, c1->first);
564 //G4cout << "angle " << angle << G4endl;
565
566 counter++;
567
568 if ( counter > fNv) {
569 G4Exception("G4ExtrudedSolid::AddGeneralPolygonFacets",
570 "GeomSolids0003", FatalException,
571 "Triangularisation has failed.");
572 break;
573 }
574 }
575
576 G4bool good = true;
577 std::vector< Vertex >::iterator it;
578 for ( it=verticesToBeDone.begin(); it != verticesToBeDone.end(); ++it )
579 {
580 // skip vertices of tested triangle
581 //
582 if ( it == c1 || it == c2 || it == c3 ) { continue; }
583
584 if ( IsPointInside(c1->first, c2->first, c3->first, it->first) )
585 {
586 // G4cout << "Point " << it->second << " is inside" << G4endl;
587 good = false;
588
589 // try next three consecutive vertices
590 //
591 c1 = c2;
592 c2 = c3;
593 ++c3;
594 if ( c3 == verticesToBeDone.end() ) { c3 = verticesToBeDone.begin(); }
595 break;
596 }
597 // else
598 // { G4cout << "Point " << it->second << " is outside" << G4endl; }
599 }
600 if ( good )
601 {
602 // all points are outside triangle, we can make a facet
603
604 // G4cout << "Found triangle : "
605 // << c1->second << " " << c2->second
606 // << " " << c3->second << G4endl;
607
608 G4bool result;
609 result = AddFacet( MakeDownFacet(c1->second, c2->second, c3->second) );
610 if ( ! result ) { return false; }
611
612 result = AddFacet( MakeUpFacet(c1->second, c2->second, c3->second) );
613 if ( ! result ) { return false; }
614
615 std::vector<G4int> triangle(3);
616 triangle[0] = c1->second;
617 triangle[1] = c2->second;
618 triangle[2] = c3->second;
619 fTriangles.push_back(triangle);
620
621 // remove the ear point from verticesToBeDone
622 //
623 verticesToBeDone.erase(c2);
624 c1 = verticesToBeDone.begin();
625 c2 = c1+1;
626 c3 = c1+2;
627 }
628 }
629 return true;
630}
631
632//_____________________________________________________________________________
633
634G4bool G4ExtrudedSolid::MakeFacets()
635{
636 // Define facets
637
638 G4bool good;
639
640 // Decomposition of polygonal sides in the facets
641 //
642 if ( fNv == 3 )
643 {
644 good = AddFacet( new G4TriangularFacet( GetVertex(0, 0), GetVertex(0, 1),
645 GetVertex(0, 2), ABSOLUTE) );
646 if ( ! good ) { return false; }
647
648 good = AddFacet( new G4TriangularFacet( GetVertex(fNz-1, 2), GetVertex(fNz-1, 1),
649 GetVertex(fNz-1, 0), ABSOLUTE) );
650 if ( ! good ) { return false; }
651
652 std::vector<G4int> triangle(3);
653 triangle[0] = 0;
654 triangle[1] = 1;
655 triangle[2] = 2;
656 fTriangles.push_back(triangle);
657 }
658
659 else if ( fNv == 4 )
660 {
661 good = AddFacet( new G4QuadrangularFacet( GetVertex(0, 0),GetVertex(0, 1),
662 GetVertex(0, 2),GetVertex(0, 3),
663 ABSOLUTE) );
664 if ( ! good ) { return false; }
665
666 good = AddFacet( new G4QuadrangularFacet( GetVertex(fNz-1, 3), GetVertex(fNz-1, 2),
667 GetVertex(fNz-1, 1), GetVertex(fNz-1, 0),
668 ABSOLUTE) );
669 if ( ! good ) { return false; }
670
671 std::vector<G4int> triangle1(3);
672 triangle1[0] = 0;
673 triangle1[1] = 1;
674 triangle1[2] = 2;
675 fTriangles.push_back(triangle1);
676
677 std::vector<G4int> triangle2(3);
678 triangle2[0] = 0;
679 triangle2[1] = 2;
680 triangle2[2] = 3;
681 fTriangles.push_back(triangle2);
682 }
683 else
684 {
685 good = AddGeneralPolygonFacets();
686 if ( ! good ) { return false; }
687 }
688
689 // The quadrangular sides
690 //
691 for ( G4int iz = 0; iz < fNz-1; ++iz )
692 {
693 for ( G4int i = 0; i < fNv; ++i )
694 {
695 G4int j = (i+1) % fNv;
696 good = AddFacet( new G4QuadrangularFacet
697 ( GetVertex(iz, j), GetVertex(iz, i),
698 GetVertex(iz+1, i), GetVertex(iz+1, j), ABSOLUTE) );
699 if ( ! good ) { return false; }
700 }
701 }
702
703 SetSolidClosed(true);
704
705 return good;
706}
707
708//_____________________________________________________________________________
709
710G4bool G4ExtrudedSolid::IsConvex() const
711{
712 // Get polygon convexity (polygon is convex if all vertex angles are < pi )
713
714 for ( G4int i=0; i< fNv; ++i )
715 {
716 G4int j = ( i + 1 ) % fNv;
717 G4int k = ( i + 2 ) % fNv;
718 G4TwoVector v1 = fPolygon[i]-fPolygon[j];
719 G4TwoVector v2 = fPolygon[k]-fPolygon[j];
720 G4double dphi = v2.phi() - v1.phi();
721 if ( dphi < 0. ) { dphi += 2.*pi; }
722
723 if ( dphi >= pi ) { return false; }
724 }
725
726 return true;
727}
728
729//_____________________________________________________________________________
730
732{
733 // Return entity type
734
735 return fGeometryType;
736}
737
738//_____________________________________________________________________________
739
741{
742 return new G4ExtrudedSolid(*this);
743}
744
745//_____________________________________________________________________________
746
748{
749 // Override the base class function as it fails in case of concave polygon.
750 // Project the point in the original polygon scale and check if it is inside
751 // for each triangle.
752
753 // Check first if outside extent
754 //
755 if ( p.x() < GetMinXExtent() - kCarTolerance * 0.5 ||
756 p.x() > GetMaxXExtent() + kCarTolerance * 0.5 ||
757 p.y() < GetMinYExtent() - kCarTolerance * 0.5 ||
758 p.y() > GetMaxYExtent() + kCarTolerance * 0.5 ||
759 p.z() < GetMinZExtent() - kCarTolerance * 0.5 ||
760 p.z() > GetMaxZExtent() + kCarTolerance * 0.5 )
761 {
762 // G4cout << "G4ExtrudedSolid::Outside extent: " << p << G4endl;
763 return kOutside;
764 }
765
766 // Project point p(z) to the polygon scale p0
767 //
768 G4TwoVector pscaled = ProjectPoint(p);
769
770 // Check if on surface of polygon
771 //
772 for ( G4int i=0; i<fNv; ++i )
773 {
774 G4int j = (i+1) % fNv;
775 if ( IsSameLineSegment(pscaled, fPolygon[i], fPolygon[j]) )
776 {
777 // G4cout << "G4ExtrudedSolid::Inside return Surface (on polygon) "
778 // << G4endl;
779
780 return kSurface;
781 }
782 }
783
784 // Now check if inside triangles
785 //
786 std::vector< std::vector<G4int> >::const_iterator it = fTriangles.begin();
787 G4bool inside = false;
788 do
789 {
790 if ( IsPointInside(fPolygon[(*it)[0]], fPolygon[(*it)[1]],
791 fPolygon[(*it)[2]], pscaled) ) { inside = true; }
792 ++it;
793 } while ( (inside == false) && (it != fTriangles.end()) );
794
795 if ( inside )
796 {
797 // Check if on surface of z sides
798 //
799 if ( std::fabs( p.z() - fZSections[0].fZ ) < kCarTolerance * 0.5 ||
800 std::fabs( p.z() - fZSections[fNz-1].fZ ) < kCarTolerance * 0.5 )
801 {
802 // G4cout << "G4ExtrudedSolid::Inside return Surface (on z side)"
803 // << G4endl;
804
805 return kSurface;
806 }
807
808 // G4cout << "G4ExtrudedSolid::Inside return Inside" << G4endl;
809
810 return kInside;
811 }
812
813 // G4cout << "G4ExtrudedSolid::Inside return Outside " << G4endl;
814
815 return kOutside;
816}
817
818//_____________________________________________________________________________
819
821 const G4ThreeVector &v,
822 const G4bool calcNorm,
823 G4bool *validNorm,
824 G4ThreeVector *n) const
825{
826 // Override the base class function to redefine validNorm
827 // (the solid can be concave)
828
829 G4double distOut =
830 G4TessellatedSolid::DistanceToOut(p, v, calcNorm, validNorm, n);
831 if (validNorm) { *validNorm = fIsConvex; }
832
833 return distOut;
834}
835
836
837//_____________________________________________________________________________
838
840{
841 // Override the overloaded base class function
842
844}
845
846//_____________________________________________________________________________
847
848std::ostream& G4ExtrudedSolid::StreamInfo(std::ostream &os) const
849{
850 G4int oldprc = os.precision(16);
851 os << "-----------------------------------------------------------\n"
852 << " *** Dump for solid - " << GetName() << " ***\n"
853 << " ===================================================\n"
854 << " Solid geometry type: " << fGeometryType << G4endl;
855
856 if ( fIsConvex)
857 { os << " Convex polygon; list of vertices:" << G4endl; }
858 else
859 { os << " Concave polygon; list of vertices:" << G4endl; }
860
861 for ( G4int i=0; i<fNv; ++i )
862 {
863 os << std::setw(5) << "#" << i
864 << " vx = " << fPolygon[i].x()/mm << " mm"
865 << " vy = " << fPolygon[i].y()/mm << " mm" << G4endl;
866 }
867
868 os << " Sections:" << G4endl;
869 for ( G4int iz=0; iz<fNz; ++iz )
870 {
871 os << " z = " << fZSections[iz].fZ/mm << " mm "
872 << " x0= " << fZSections[iz].fOffset.x()/mm << " mm "
873 << " y0= " << fZSections[iz].fOffset.y()/mm << " mm "
874 << " scale= " << fZSections[iz].fScale << G4endl;
875 }
876
877/*
878 // Triangles (for debugging)
879 os << G4endl;
880 os << " Triangles:" << G4endl;
881 os << " Triangle # vertex1 vertex2 vertex3" << G4endl;
882
883 G4int counter = 0;
884 std::vector< std::vector<G4int> >::const_iterator it;
885 for ( it = fTriangles.begin(); it != fTriangles.end(); it++ ) {
886 std::vector<G4int> triangle = *it;
887 os << std::setw(10) << counter++
888 << std::setw(10) << triangle[0] << std::setw(10) << triangle[1] << std::setw(10) << triangle[2]
889 << G4endl;
890 }
891*/
892 os.precision(oldprc);
893
894 return os;
895}
@ FatalException
@ FatalErrorInArgument
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
@ ABSOLUTE
Definition: G4VFacet.hh:56
#define G4endl
Definition: G4ios.hh:52
double x() const
double phi() const
double y() const
double z() const
double x() const
double y() const
EInside Inside(const G4ThreeVector &p) const
std::ostream & StreamInfo(std::ostream &os) const
virtual ~G4ExtrudedSolid()
G4ExtrudedSolid & operator=(const G4ExtrudedSolid &rhs)
G4ExtrudedSolid(const G4String &pName, std::vector< G4TwoVector > polygon, std::vector< ZSection > zsections)
G4double DistanceToOut(const G4ThreeVector &p, const G4ThreeVector &v, const G4bool calcNorm=false, G4bool *validNorm=0, G4ThreeVector *n=0) const
G4GeometryType GetEntityType() const
G4VSolid * Clone() const
G4TwoVector GetVertex(G4int index) const
G4double GetMinYExtent() const
G4double GetMinZExtent() const
G4TessellatedSolid & operator=(const G4TessellatedSolid &right)
G4bool AddFacet(G4VFacet *aFacet)
G4double GetMaxYExtent() const
G4double GetMaxZExtent() const
G4double GetMaxXExtent() const
virtual G4double DistanceToOut(const G4ThreeVector &p) const
G4double GetMinXExtent() const
void SetSolidClosed(const G4bool t)
G4String GetName() const
G4double kCarTolerance
Definition: G4VSolid.hh:307
EInside
Definition: geomdefs.hh:58
@ kInside
Definition: geomdefs.hh:58
@ kOutside
Definition: geomdefs.hh:58
@ kSurface
Definition: geomdefs.hh:58
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
const G4double pi