Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4Integrator.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// Class description:
30//
31// Template class collecting integrator methods for generic funtions.
32
33// History:
34//
35// 04.09.99 V.Grichine, first implementation based on G4SimpleIntegration class
36// H.P.Wellisch, G.Cosmo, and E.Cherniaev advises
37// 08.09.99 V.Grichine, methods involving orthogonal polynomials
38//
39
40
41#ifndef G4INTEGRATOR_HH
42#define G4INTEGRATOR_HH 1
43
44#include "G4Types.hh"
45#include <cmath>
47
48template <class T, class F>
50{
51 public: // with description
52
55
56 G4double Simpson( T& typeT, F f, G4double a, G4double b, G4int n ) ;
57 G4double Simpson( T* ptrT, F f, G4double a, G4double b, G4int n ) ;
59 G4double a, G4double b, G4int n ) ;
60 // Simpson integration method
61
62 G4double AdaptiveGauss( T& typeT, F f, G4double a, G4double b, G4double e ) ;
63 G4double AdaptiveGauss( T* ptrT, F f, G4double a, G4double b, G4double e ) ;
65 G4double a, G4double b, G4double e ) ;
66 // Adaptive Gauss method
67
68
69 // Integration methods involving orthogohol polynomials
70
71 G4double Legendre( T& typeT, F f, G4double a, G4double b, G4int n) ;
72 G4double Legendre( T* ptrT, F f, G4double a, G4double b, G4int n) ;
74 //
75 // Methods involving Legendre polynomials
76
77 G4double Legendre10( T& typeT, F f,G4double a, G4double b) ;
78 G4double Legendre10( T* ptrT, F f,G4double a, G4double b) ;
80 //
81 // Legendre10 is very fast and accurate enough
82
83 G4double Legendre96( T& typeT, F f,G4double a, G4double b) ;
84 G4double Legendre96( T* ptrT, F f,G4double a, G4double b) ;
86 //
87 // Legendre96 is very accurate and fast enough
88
89 G4double Chebyshev( T& typeT, F f, G4double a, G4double b, G4int n) ;
90 G4double Chebyshev( T* ptrT, F f, G4double a, G4double b, G4int n) ;
92 //
93 // Methods involving Chebyshev polynomials
94
95 G4double Laguerre( T& typeT, F f, G4double alpha, G4int n) ;
96 G4double Laguerre( T* ptrT, F f, G4double alpha, G4int n) ;
98 //
99 // Method involving Laguerre polynomials
100
101 G4double Hermite( T& typeT, F f, G4int n) ;
102 G4double Hermite( T* ptrT, F f, G4int n) ;
104 //
105 // Method involving Hermite polynomials
106
107 G4double Jacobi( T& typeT, F f, G4double alpha, G4double beta, G4int n) ;
108 G4double Jacobi( T* ptrT, F f, G4double alpha, G4double beta, G4int n) ;
110 G4double beta, G4int n) ;
111 // Method involving Jacobi polynomials
112
113
114 protected:
115
116 // Auxiliary function for adaptive Gauss method
117
118 G4double Gauss( T& typeT, F f, G4double a, G4double b ) ;
119 G4double Gauss( T* ptrT, F f, G4double a, G4double b ) ;
121
122 void AdaptGauss( T& typeT, F f, G4double a, G4double b,
123 G4double e, G4double& sum, G4int& n) ;
124 void AdaptGauss( T* typeT, F f, G4double a, G4double b,
125 G4double e, G4double& sum, G4int& n ) ;
127 G4double e, G4double& sum, G4int& n ) ;
128
130
131
132} ;
133
134#include "G4Integrator.icc"
135
136#endif
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
G4double Gauss(T &typeT, F f, G4double a, G4double b)
G4double Jacobi(G4double(*f)(G4double), G4double alpha, G4double beta, G4int n)
G4double Simpson(T *ptrT, F f, G4double a, G4double b, G4int n)
G4double Legendre96(T &typeT, F f, G4double a, G4double b)
G4double AdaptiveGauss(T *ptrT, F f, G4double a, G4double b, G4double e)
void AdaptGauss(T &typeT, F f, G4double a, G4double b, G4double e, G4double &sum, G4int &n)
G4double Legendre(G4double(*f)(G4double), G4double a, G4double b, G4int n)
G4double Chebyshev(G4double(*f)(G4double), G4double a, G4double b, G4int n)
G4double Hermite(T *ptrT, F f, G4int n)
G4double Laguerre(G4double(*f)(G4double), G4double alpha, G4int n)
G4double Jacobi(T *ptrT, F f, G4double alpha, G4double beta, G4int n)
G4double Jacobi(T &typeT, F f, G4double alpha, G4double beta, G4int n)
G4double Simpson(T &typeT, F f, G4double a, G4double b, G4int n)
G4double Laguerre(T &typeT, F f, G4double alpha, G4int n)
G4double Legendre10(T &typeT, F f, G4double a, G4double b)
void AdaptGauss(G4double(*f)(G4double), G4double a, G4double b, G4double e, G4double &sum, G4int &n)
G4double Legendre96(G4double(*f)(G4double), G4double a, G4double b)
G4double Legendre96(T *ptrT, F f, G4double a, G4double b)
G4double Chebyshev(T &typeT, F f, G4double a, G4double b, G4int n)
G4double Gauss(T *ptrT, F f, G4double a, G4double b)
G4double Hermite(G4double(*f)(G4double), G4int n)
G4double Gauss(G4double(*f)(G4double), G4double a, G4double b)
G4double Legendre10(T *ptrT, F f, G4double a, G4double b)
G4double Simpson(G4double(*f)(G4double), G4double a, G4double b, G4int n)
G4double AdaptiveGauss(T &typeT, F f, G4double a, G4double b, G4double e)
G4double GammaLogarithm(G4double xx)
G4double Chebyshev(T *ptrT, F f, G4double a, G4double b, G4int n)
G4double AdaptiveGauss(G4double(*f)(G4double), G4double a, G4double b, G4double e)
G4double Legendre10(G4double(*f)(G4double), G4double a, G4double b)
G4double Legendre(T *ptrT, F f, G4double a, G4double b, G4int n)
G4double Legendre(T &typeT, F f, G4double a, G4double b, G4int n)
G4double Hermite(T &typeT, F f, G4int n)
G4double Laguerre(T *ptrT, F f, G4double alpha, G4int n)
void AdaptGauss(T *typeT, F f, G4double a, G4double b, G4double e, G4double &sum, G4int &n)