Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4EmSaturation.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// -------------------------------------------------------------------
29//
30// GEANT4 Class file
31//
32//
33// File name: G4EmSaturation
34//
35// Author: Vladimir Ivanchenko
36//
37// Creation date: 18.02.2008
38//
39// Modifications:
40//
41// -------------------------------------------------------------
42
43//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
44//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
45
46#include "G4EmSaturation.hh"
48#include "G4SystemOfUnits.hh"
49#include "G4LossTableManager.hh"
50#include "G4NistManager.hh"
51#include "G4Material.hh"
53#include "G4Electron.hh"
54#include "G4Proton.hh"
55
56//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
57
59{
60 verbose = 1;
61 manager = 0;
62
63 curMaterial = 0;
64 curBirks = 0.0;
65 curRatio = 1.0;
66 curChargeSq = 1.0;
67 nMaterials = 0;
68
69 electron = 0;
70 proton = 0;
72
73 Initialise();
74}
75
76//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
77
79{}
80
81//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
82
84 const G4ParticleDefinition* p,
85 const G4MaterialCutsCouple* couple,
86 G4double length,
87 G4double edep,
88 G4double niel)
89{
90 if(edep <= 0.0) { return 0.0; }
91
92 G4double evis = edep;
93 G4double bfactor = FindBirksCoefficient(couple->GetMaterial());
94
95 if(bfactor > 0.0) {
96
97 G4int pdgCode = p->GetPDGEncoding();
98 // atomic relaxations for gamma incident
99 if(22 == pdgCode) {
100 evis /= (1.0 + bfactor*edep/manager->GetRange(electron,edep,couple));
101
102 // energy loss
103 } else {
104
105 // protections
106 G4double nloss = niel;
107 if(nloss < 0.0) nloss = 0.0;
108 G4double eloss = edep - nloss;
109
110 // neutrons
111 if(2112 == pdgCode || eloss < 0.0 || length <= 0.0) {
112 nloss = edep;
113 eloss = 0.0;
114 }
115
116 // continues energy loss
117 if(eloss > 0.0) { eloss /= (1.0 + bfactor*eloss/length); }
118
119 // non-ionizing energy loss
120 if(nloss > 0.0) {
121 if(!proton) { proton = G4Proton::Proton(); }
122 G4double escaled = nloss*curRatio;
123 G4double range = manager->GetRange(proton,escaled,couple)/curChargeSq;
124 nloss /= (1.0 + bfactor*nloss/range);
125 }
126
127 evis = eloss + nloss;
128 }
129 }
130
131 return evis;
132}
133
134//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
135
137{
138 G4String name = mat->GetName();
139 // is this material in the vector?
140
141 for(G4int j=0; j<nG4Birks; ++j) {
142 if(name == g4MatNames[j]) {
143 if(verbose > 0)
144 G4cout << "### G4EmSaturation::FindG4BirksCoefficient for "
145 << name << " is " << g4MatData[j]*MeV/mm << " mm/MeV "
146 << G4endl;
147 return g4MatData[j];
148 }
149 }
150 return FindBirksCoefficient(mat);
151}
152
153//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
154
155G4double G4EmSaturation::FindBirksCoefficient(const G4Material* mat)
156{
157 // electron should exist in any case
158 if(!manager) {
160 electron= G4Electron::Electron();
161 }
162
163 if(mat == curMaterial) { return curBirks; }
164
165 curMaterial = mat;
166 curBirks = 0.0;
167 curRatio = 1.0;
168 curChargeSq = 1.0;
169
170 // seach in the run-time list
171 for(G4int i=0; i<nMaterials; ++i) {
172 if(mat == matPointers[i]) {
173 curBirks = mat->GetIonisation()->GetBirksConstant();
174 curRatio = massFactors[i];
175 curChargeSq = effCharges[i];
176 return curBirks;
177 }
178 }
179
180 G4String name = mat->GetName();
181 curBirks = mat->GetIonisation()->GetBirksConstant();
182
183 // material has no Birks coeffitient defined
184 // seach in the Geant4 list
185 if(curBirks == 0.0) {
186 for(G4int j=0; j<nG4Birks; ++j) {
187 if(name == g4MatNames[j]) {
188 mat->GetIonisation()->SetBirksConstant(g4MatData[j]);
189 curBirks = g4MatData[j];
190 break;
191 }
192 }
193 }
194
195 if(curBirks == 0.0 && verbose > 0) {
196 G4cout << "### G4EmSaturation::FindBirksCoefficient fails "
197 " for material " << name << G4endl;
198 }
199
200 // compute mean mass ratio
201 curRatio = 0.0;
202 curChargeSq = 0.0;
203 G4double norm = 0.0;
204 const G4ElementVector* theElementVector = mat->GetElementVector();
205 const G4double* theAtomNumDensityVector = mat->GetVecNbOfAtomsPerVolume();
206 size_t nelm = mat->GetNumberOfElements();
207 for (size_t i=0; i<nelm; ++i) {
208 const G4Element* elm = (*theElementVector)[i];
209 G4double Z = elm->GetZ();
210 G4double w = Z*Z*theAtomNumDensityVector[i];
211 curRatio += w/nist->GetAtomicMassAmu(G4int(Z));
212 curChargeSq = Z*Z*w;
213 norm += w;
214 }
215 curRatio *= proton_mass_c2/norm;
216 curChargeSq /= norm;
217
218 // store results
219 matPointers.push_back(mat);
220 matNames.push_back(name);
221 massFactors.push_back(curRatio);
222 effCharges.push_back(curChargeSq);
223 nMaterials++;
224 if(curBirks > 0.0 && verbose > 0) {
225 G4cout << "### G4EmSaturation::FindBirksCoefficient Birks coefficient for "
226 << name << " " << curBirks*MeV/mm << " mm/MeV" << G4endl;
227 }
228 return curBirks;
229}
230
231//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
232
234{
235 if(nMaterials > 0) {
236 G4cout << "### Birks coeffitients used in run time" << G4endl;
237 for(G4int i=0; i<nMaterials; ++i) {
238 G4double br = matPointers[i]->GetIonisation()->GetBirksConstant();
239 G4cout << " " << matNames[i] << " "
240 << br*MeV/mm << " mm/MeV" << " "
241 << br*matPointers[i]->GetDensity()*MeV*cm2/g
242 << " g/cm^2/MeV"
243 << G4endl;
244 }
245 }
246}
247
248//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
249
251{
252 if(nG4Birks > 0) {
253 G4cout << "### Birks coeffitients for Geant4 materials" << G4endl;
254 for(G4int i=0; i<nG4Birks; ++i) {
255 G4cout << " " << g4MatNames[i] << " "
256 << g4MatData[i]*MeV/mm << " mm/MeV" << G4endl;
257 }
258 }
259}
260
261//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
262
263void G4EmSaturation::Initialise()
264{
265 // M.Hirschberg et al., IEEE Trans. Nuc. Sci. 39 (1992) 511
266 // SCSN-38 kB = 0.00842 g/cm^2/MeV; rho = 1.06 g/cm^3
267 g4MatNames.push_back("G4_POLYSTYRENE");
268 g4MatData.push_back(0.07943*mm/MeV);
269
270 // C.Fabjan (private communication)
271 // kB = 0.006 g/cm^2/MeV; rho = 7.13 g/cm^3
272 g4MatNames.push_back("G4_BGO");
273 g4MatData.push_back(0.008415*mm/MeV);
274
275 // A.Ribon analysis of publications
276 // Scallettar et al., Phys. Rev. A25 (1982) 2419.
277 // NIM A 523 (2004) 275.
278 // kB = 0.022 g/cm^2/MeV; rho = 1.396 g/cm^3;
279 // ATLAS Efield = 10 kV/cm provide the strongest effect
280 g4MatNames.push_back("G4_lAr");
281 g4MatData.push_back(0.1576*mm/MeV);
282
283 //G4_BARIUM_FLUORIDE
284 //G4_CESIUM_IODIDE
285 //G4_GEL_PHOTO_EMULSION
286 //G4_PHOTO_EMULSION
287 //G4_PLASTIC_SC_VINYLTOLUENE
288 //G4_SODIUM_IODIDE
289 //G4_STILBENE
290 //G4_lAr
291 //G4_PbWO4
292 //G4_Lucite
293
294 nG4Birks = g4MatData.size();
295}
296
297//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
std::vector< G4Element * > G4ElementVector
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
static G4Electron * Electron()
Definition: G4Electron.cc:94
G4double GetZ() const
Definition: G4Element.hh:131
virtual ~G4EmSaturation()
G4double VisibleEnergyDeposition(const G4ParticleDefinition *, const G4MaterialCutsCouple *, G4double length, G4double edepTotal, G4double edepNIEL=0.0)
G4double FindG4BirksCoefficient(const G4Material *)
void DumpBirksCoefficients()
void DumpG4BirksCoefficients()
void SetBirksConstant(G4double value)
G4double GetBirksConstant() const
static G4LossTableManager * Instance()
G4double GetRange(const G4ParticleDefinition *aParticle, G4double kineticEnergy, const G4MaterialCutsCouple *couple)
const G4Material * GetMaterial() const
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:189
G4IonisParamMat * GetIonisation() const
Definition: G4Material.hh:225
size_t GetNumberOfElements() const
Definition: G4Material.hh:185
const G4double * GetVecNbOfAtomsPerVolume() const
Definition: G4Material.hh:205
const G4String & GetName() const
Definition: G4Material.hh:177
static G4NistManager * Instance()
G4double GetAtomicMassAmu(const G4String &symb) const
static G4Proton * Proton()
Definition: G4Proton.cc:93