Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LEAntiProtonInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// Hadronic Process: AntiProton Inelastic Process
29// J.L. Chuma, TRIUMF, 13-Feb-1997
30// J.P. Wellisch: 23-Apr-97: Bug hunting
31// Modified by J.L.Chuma 30-Apr-97: added originalTarget for CalculateMomenta
32//
33
34#include <iostream>
35
38#include "G4SystemOfUnits.hh"
39#include "Randomize.hh"
40
41
44{
45 SetMinEnergy(0.0);
46 SetMaxEnergy(25.*GeV);
47 G4cout << "WARNING: model G4LEAntiProtonInelastic is being deprecated and will\n"
48 << "disappear in Geant4 version 10.0" << G4endl;
49}
50
51
52void G4LEAntiProtonInelastic::ModelDescription(std::ostream& outFile) const
53{
54 outFile << "G4LEAntiProtonInelastic is one of the Low Energy Parameterized\n"
55 << "(LEP) models used to implement inelastic anti-proton scattering\n"
56 << "from nuclei. It is a re-engineered version of the GHEISHA\n"
57 << "code of H. Fesefeldt. It divides the initial collision\n"
58 << "products into backward- and forward-going clusters which are\n"
59 << "then decayed into final state hadrons. The model does not\n"
60 << "conserve energy on an event-by-event basis. It may be\n"
61 << "applied to anti-protons with initial energies between 0 and 25\n"
62 << "GeV.\n";
63}
64
65
68 G4Nucleus& targetNucleus)
69{
70 const G4HadProjectile* originalIncident = &aTrack;
71
72 if (originalIncident->GetKineticEnergy() <= 0.1*MeV) {
76 return &theParticleChange;
77 }
78
79 // create the target particle
80
81 G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
82
83 if (verboseLevel > 1) {
84 const G4Material *targetMaterial = aTrack.GetMaterial();
85 G4cout << "G4LEAntiProtonInelastic::ApplyYourself called" << G4endl;
86 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
87 G4cout << "target material = " << targetMaterial->GetName() << ", ";
88 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
89 << G4endl;
90 }
91
92 // Fermi motion and evaporation
93 // As of Geant3, the Fermi energy calculation had not been Done
94
95 G4double ek = originalIncident->GetKineticEnergy()/MeV;
96 G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
97 G4ReactionProduct modifiedOriginal;
98 modifiedOriginal = *originalIncident;
99
100 G4double tkin = targetNucleus.Cinema( ek );
101 ek += tkin;
102 modifiedOriginal.SetKineticEnergy( ek*MeV );
103 G4double et = ek + amas;
104 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
105 G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
106 if (pp > 0.0) {
107 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
108 modifiedOriginal.SetMomentum( momentum * (p/pp) );
109 }
110
111 // calculate black track energies
112 tkin = targetNucleus.EvaporationEffects( ek );
113 ek -= tkin;
114 modifiedOriginal.SetKineticEnergy( ek*MeV );
115 et = ek + amas;
116 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
117 pp = modifiedOriginal.GetMomentum().mag()/MeV;
118 if (pp > 0.0) {
119 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
120 modifiedOriginal.SetMomentum( momentum * (p/pp) );
121 }
122 G4ReactionProduct currentParticle = modifiedOriginal;
123 G4ReactionProduct targetParticle;
124 targetParticle = *originalTarget;
125 currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
126 targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
127 G4bool incidentHasChanged = false;
128 G4bool targetHasChanged = false;
129 G4bool quasiElastic = false;
130 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
131 G4int vecLen = 0;
132 vec.Initialize( 0 );
133
134 const G4double cutOff = 0.1;
135 const G4double anni = std::min( 1.3*originalIncident->GetTotalMomentum()/GeV, 0.4 );
136
137 if ((currentParticle.GetKineticEnergy()/MeV > cutOff) ||
138 (G4UniformRand() > anni) )
139 Cascade(vec, vecLen, originalIncident, currentParticle, targetParticle,
140 incidentHasChanged, targetHasChanged, quasiElastic);
141 else
142 quasiElastic = true;
143
144 CalculateMomenta(vec, vecLen, originalIncident, originalTarget,
145 modifiedOriginal, targetNucleus, currentParticle,
146 targetParticle, incidentHasChanged, targetHasChanged,
147 quasiElastic);
148
149 SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged);
150
151 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
152
153 delete originalTarget;
154 return &theParticleChange;
155}
156
157
158void G4LEAntiProtonInelastic::Cascade(
160 G4int& vecLen,
161 const G4HadProjectile *originalIncident,
162 G4ReactionProduct &currentParticle,
163 G4ReactionProduct &targetParticle,
164 G4bool &incidentHasChanged,
165 G4bool &targetHasChanged,
166 G4bool &quasiElastic )
167{
168 // derived from original FORTRAN code CASPB by H. Fesefeldt (13-Sep-1987)
169 //
170 // AntiProton undergoes interaction with nucleon within a nucleus. Check if
171 // it is energetically possible to produce pions/kaons. In not, assume
172 // nuclear excitation occurs and input particle is degraded in energy. No
173 // other particles are produced. If reaction is possible, find the correct
174 // number of pions/protons/neutrons produced using an interpolation to
175 // multiplicity data. Replace some pions or protons/neutrons by kaons or
176 // strange baryons according to the average multiplicity per inelastic
177 // reaction.
178
179 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
180 const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
181 const G4double pOriginal = originalIncident->GetTotalMomentum()/MeV;
182 const G4double targetMass = targetParticle.GetMass()/MeV;
183 G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
184 targetMass*targetMass +
185 2.0*targetMass*etOriginal );
186 G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
187
188 static G4bool first = true;
189 const G4int numMul = 1200;
190 const G4int numMulA = 400;
191 const G4int numSec = 60;
192 static G4double protmul[numMul], protnorm[numSec]; // proton constants
193 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
194 static G4double protmulA[numMulA], protnormA[numSec]; // proton constants
195 static G4double neutmulA[numMulA], neutnormA[numSec]; // neutron constants
196
197 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
198 G4int counter, nt=0;
199 G4int npos=0, nneg = 0, nzero=0;
200 G4double test;
201 const G4double c = 1.25;
202 const G4double b[] = { 0.7, 0.7 };
203 if (first) { // Computation of normalization constants will only be done once
204 first = false;
205 G4int i;
206 for( i=0; i<numMul; ++i )protmul[i] = 0.0;
207 for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
208 counter = -1;
209 for (npos = 0; npos < (numSec/3); ++npos) {
210 for (nneg = std::max(0,npos-1); nneg <= (npos+1); ++nneg) {
211 for (nzero = 0; nzero<numSec/3; ++nzero) {
212 if ( ++counter < numMul ) {
213 nt = npos+nneg+nzero;
214 if (nt > 0 && nt <= numSec) {
215 protmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[0],c);
216 protnorm[nt-1] += protmul[counter];
217 }
218 }
219 }
220 }
221 }
222
223 for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
224 for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
225 counter = -1;
226 for (npos = 0; npos < numSec/3; ++npos) {
227 for (nneg = npos; nneg <= (npos+2); ++nneg) {
228 for (nzero = 0; nzero < numSec/3; ++nzero) {
229 if (++counter < numMul) {
230 nt = npos+nneg+nzero;
231 if ((nt > 0) && (nt <= numSec) ) {
232 neutmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[1],c);
233 neutnorm[nt-1] += neutmul[counter];
234 }
235 }
236 }
237 }
238 }
239 for (i = 0; i < numSec; ++i) {
240 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
241 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
242 }
243
244 // do the same for annihilation channels
245 for (i = 0; i < numMulA; ++i) protmulA[i] = 0.0;
246 for (i = 0; i < numSec; ++i) protnormA[i] = 0.0;
247 counter = -1;
248 for (npos = 0; npos < (numSec/3); ++npos) {
249 nneg = npos;
250 for (nzero=0; nzero<numSec/3; ++nzero) {
251 if (++counter < numMulA) {
252 nt = npos+nneg+nzero;
253 if (nt > 1 && nt <= numSec) {
254 protmulA[counter] = Pmltpc(npos,nneg,nzero,nt,b[0],c);
255 protnormA[nt-1] += protmulA[counter];
256 }
257 }
258 }
259 }
260 for (i = 0; i < numMulA; ++i) neutmulA[i] = 0.0;
261 for (i = 0; i < numSec; ++i) neutnormA[i] = 0.0;
262 counter = -1;
263 for (npos=0; npos < numSec/3; ++npos) {
264 nneg = npos+1;
265 for( nzero=0; nzero<numSec/3; ++nzero ) {
266 if( ++counter < numMulA ) {
267 nt = npos+nneg+nzero;
268 if( (nt>1) && (nt<=numSec) ) {
269 neutmulA[counter] = Pmltpc(npos,nneg,nzero,nt,b[1],c);
270 neutnormA[nt-1] += neutmulA[counter];
271 }
272 }
273 }
274 }
275 for (i=0; i<numSec; ++i ) {
276 if( protnormA[i] > 0.0 )protnormA[i] = 1.0/protnormA[i];
277 if( neutnormA[i] > 0.0 )neutnormA[i] = 1.0/neutnormA[i];
278 }
279 } // end of initialization
280
281 const G4double expxu = 82.; // upper bound for arg. of exp
282 const G4double expxl = -expxu; // lower bound for arg. of exp
283
288
289 const G4double anhl[] = {1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.90,
290 0.6,0.52,0.47,0.44,0.41,0.39,0.37,0.35,0.34,0.24,
291 0.19,0.15,0.12,0.10,0.09,0.07,0.06,0.05,0.0};
292
293 G4int iplab = G4int( pOriginal/GeV*10.0 );
294 if( iplab > 9 )iplab = G4int( pOriginal/GeV ) + 9;
295 if( iplab > 18 )iplab = G4int( pOriginal/GeV/10.0 ) + 18;
296 if( iplab > 27 )iplab = 28;
297 if (G4UniformRand() > anhl[iplab]) {
298 if (availableEnergy <= aPiPlus->GetPDGMass()/MeV) {
299 quasiElastic = true;
300 return;
301 }
302 G4int ieab = static_cast<G4int>(availableEnergy*5.0/GeV);
303 const G4double supp[] = {0.,0.4,0.55,0.65,0.75,0.82,0.86,0.90,0.94,0.98};
304 G4double w0, wp, wt, wm;
305 if ((availableEnergy < 2.0*GeV) && (G4UniformRand() >= supp[ieab]) ) {
306 // suppress high multiplicity events at low momentum
307 // only one pion will be produced
308 npos = nneg = nzero = 0;
309 if (targetParticle.GetDefinition() == aProton) {
310 test = std::exp(std::min(expxu,
311 std::max(expxl, -(1.0+b[1])*(1.0+b[1])/(2.0*c*c) ) ) );
312 w0 = test;
313 wp = test;
314 test = std::exp(std::min(expxu,
315 std::max(expxl, -(-1.0+b[1])*(-1.0+b[1])/(2.0*c*c) ) ) );
316 wm = test;
317 wt = w0+wp+wm;
318 wp += w0;
319 G4double ran = G4UniformRand();
320 if( ran < w0/wt )
321 nzero = 1;
322 else if( ran < wp/wt )
323 npos = 1;
324 else
325 nneg = 1;
326 } else {
327 // target is a neutron
328 test = std::exp(std::min(expxu,
329 std::max(expxl, -(1.0+b[0])*(1.0+b[0])/(2.0*c*c) ) ) );
330 w0 = test;
331 test = std::exp(std::min(expxu,
332 std::max(expxl, -(-1.0+b[0])*(-1.0+b[0])/(2.0*c*c) ) ) );
333 wm = test;
334 G4double ran = G4UniformRand();
335 if (ran < w0/(w0+wm) )
336 nzero = 1;
337 else
338 nneg = 1;
339 }
340 } else {
341 // (availableEnergy >= 2.0*GeV) || (random number < supp[ieab])
342 G4double n, anpn;
343 GetNormalizationConstant( availableEnergy, n, anpn );
344 G4double ran = G4UniformRand();
345 G4double dum, excs = 0.0;
346 if (targetParticle.GetDefinition() == aProton) {
347 counter = -1;
348 for( npos=0; npos<numSec/3 && ran>=excs; ++npos ) {
349 for( nneg=std::max(0,npos-1); nneg<=(npos+1) && ran>=excs; ++nneg) {
350 for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
351 {
352 if( ++counter < numMul )
353 {
354 nt = npos+nneg+nzero;
355 if( (nt>0) && (nt<=numSec) )
356 {
357 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
358 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
359 if( std::fabs(dum) < 1.0 )
360 {
361 if( test >= 1.0e-10 )excs += dum*test;
362 }
363 else
364 excs += dum*test;
365 }
366 }
367 }
368 }
369 }
370 if( ran >= excs ) // 3 previous loops continued to the end
371 {
372 quasiElastic = true;
373 return;
374 }
375 }
376 else // target must be a neutron
377 {
378 counter = -1;
379 for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
380 {
381 for (nneg = npos; nneg <= (npos+2) && ran >= excs; ++nneg) {
382 for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
383 {
384 if( ++counter < numMul )
385 {
386 nt = npos+nneg+nzero;
387 if( (nt>0) && (nt<=numSec) )
388 {
389 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
390 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
391 if( std::fabs(dum) < 1.0 )
392 {
393 if( test >= 1.0e-10 )excs += dum*test;
394 }
395 else
396 excs += dum*test;
397 }
398 }
399 }
400 }
401 }
402 if( ran >= excs ) // 3 previous loops continued to the end
403 {
404 quasiElastic = true;
405 return;
406 }
407 }
408 npos--; nneg--; nzero--;
409 }
410 if( targetParticle.GetDefinition() == aProton )
411 {
412 switch (npos-nneg)
413 {
414 case 0:
415 if( G4UniformRand() < 0.33 )
416 {
417 currentParticle.SetDefinitionAndUpdateE( anAntiNeutron );
418 targetParticle.SetDefinitionAndUpdateE( aNeutron );
419 incidentHasChanged = true;
420 targetHasChanged = true;
421 }
422 break;
423 case 1:
424 targetParticle.SetDefinitionAndUpdateE( aNeutron );
425 targetHasChanged = true;
426 break;
427 default:
428 currentParticle.SetDefinitionAndUpdateE( anAntiNeutron );
429 incidentHasChanged = true;
430 break;
431 }
432 }
433 else // target must be a neutron
434 {
435 switch (npos-nneg)
436 {
437 case -1:
438 if( G4UniformRand() < 0.5 )
439 {
440 targetParticle.SetDefinitionAndUpdateE( aProton );
441 targetHasChanged = true;
442 }
443 else
444 {
445 currentParticle.SetDefinitionAndUpdateE( anAntiNeutron );
446 incidentHasChanged = true;
447 }
448 break;
449 case 0:
450 break;
451 default:
452 currentParticle.SetDefinitionAndUpdateE( anAntiNeutron );
453 targetParticle.SetDefinitionAndUpdateE( aProton );
454 incidentHasChanged = true;
455 targetHasChanged = true;
456 break;
457 }
458 }
459 }
460 else // random number <= anhl[iplab]
461 {
462 if( centerofmassEnergy <= 2*aPiPlus->GetPDGMass()/MeV )
463 {
464 quasiElastic = true;
465 return;
466 }
467 //
468 // annihilation channels
469 //
470 G4double n, anpn;
471 GetNormalizationConstant( -centerofmassEnergy, n, anpn );
472 G4double ran = G4UniformRand();
473 G4double dum, excs = 0.0;
474 if( targetParticle.GetDefinition() == aProton )
475 {
476 counter = -1;
477 for( npos=0; (npos<numSec/3) && (ran>=excs); ++npos )
478 {
479 nneg = npos;
480 for( nzero=0; (nzero<numSec/3) && (ran>=excs); ++nzero )
481 {
482 if( ++counter < numMulA )
483 {
484 nt = npos+nneg+nzero;
485 if( (nt>1) && (nt<=numSec) )
486 {
487 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
488 dum = (pi/anpn)*nt*protmulA[counter]*protnormA[nt-1]/(2.0*n*n);
489 if( std::abs(dum) < 1.0 )
490 {
491 if( test >= 1.0e-10 )excs += dum*test;
492 }
493 else
494 excs += dum*test;
495 }
496 }
497 }
498 }
499 }
500 else // target must be a neutron
501 {
502 counter = -1;
503 for( npos=0; (npos<numSec/3) && (ran>=excs); ++npos )
504 {
505 nneg = npos+1;
506 for( nzero=0; (nzero<numSec/3) && (ran>=excs); ++nzero )
507 {
508 if( ++counter < numMulA )
509 {
510 nt = npos+nneg+nzero;
511 if( (nt>1) && (nt<=numSec) )
512 {
513 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
514 dum = (pi/anpn)*nt*neutmulA[counter]*neutnormA[nt-1]/(2.0*n*n);
515 if( std::fabs(dum) < 1.0 )
516 {
517 if( test >= 1.0e-10 )excs += dum*test;
518 }
519 else
520 excs += dum*test;
521 }
522 }
523 }
524 }
525 }
526 if (ran >= excs) {
527 // 3 previous loops continued to the end
528 quasiElastic = true;
529 return;
530 }
531 npos--; nzero--;
532 currentParticle.SetMass( 0.0 );
533 targetParticle.SetMass( 0.0 );
534 }
535
536 while(npos+nneg+nzero<3) nzero++;
537 SetUpPions( npos, nneg, nzero, vec, vecLen );
538 return;
539}
@ isAlive
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector unit() const
double mag() const
Hep3Vector vect() const
static G4AntiNeutron * AntiNeutron()
G4ParticleDefinition * GetDefinition() const
void Initialize(G4int items)
Definition: G4FastVector.hh:63
void SetStatusChange(G4HadFinalStateStatus aS)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
G4double GetTotalMomentum() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
void SetMinEnergy(G4double anEnergy)
void SetMaxEnergy(const G4double anEnergy)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen)
void CalculateMomenta(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void DoIsotopeCounting(const G4HadProjectile *theProjectile, const G4Nucleus &aNucleus)
void SetUpChange(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4LEAntiProtonInelastic(const G4String &name="G4LEAntiProtonInelastic")
virtual void ModelDescription(std::ostream &outFile) const
const G4String & GetName() const
Definition: G4Material.hh:177
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
const G4String & GetParticleName() const
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static G4Proton * Proton()
Definition: G4Proton.cc:93
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4ParticleDefinition * GetDefinition() const
G4double GetMass() const
void SetMass(const G4double mas)
const G4double pi