Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LEAntiKaonZeroInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// Hadronic Process: Low Energy KaonZeroLong Inelastic Process
29// J.L. Chuma, TRIUMF, 11-Feb-1997
30// Modified by J.L.Chuma 30-Apr-97: added originalTarget for CalculateMomenta
31
34#include "G4SystemOfUnits.hh"
35#include "Randomize.hh"
37
38
39void G4LEAntiKaonZeroInelastic::ModelDescription(std::ostream& outFile) const
40{
41 outFile << "G4LEAntiKaonZeroInelastic is one of the Low Energy\n"
42 << "Parameterized (LEP) models used to implement anti-K0 scattering\n"
43 << "from nuclei. It is a re-engineered version of the GHEISHA code\n"
44 << "of H. Fesefeldt. It divides the initial collision products\n"
45 << "into backward- and forward-going clusters which are then\n"
46 << "decayed into final state hadrons. The model does not conserve\n"
47 << "energy on an event-by-event basis. It may be applied to\n"
48 << "anti-K0s with initial energies between 0 and 25 GeV.\n";
49}
50
51
54 G4Nucleus& targetNucleus)
55{
56 const G4HadProjectile* originalIncident = &aTrack;
57
58 // create the target particle
59 G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
60
61 if (verboseLevel > 1) {
62 const G4Material *targetMaterial = aTrack.GetMaterial();
63 G4cout << "G4LEAntiKaonZeroInelastic::ApplyYourself called" << G4endl;
64 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
65 G4cout << "target material = " << targetMaterial->GetName() << ", ";
66 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
67 << G4endl;
68 }
69
70 // Fermi motion and evaporation
71 // As of Geant3, the Fermi energy calculation had not been Done
72 G4double ek = originalIncident->GetKineticEnergy()/MeV;
73 G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
74 G4ReactionProduct modifiedOriginal;
75 modifiedOriginal = *originalIncident;
76
77 G4double tkin = targetNucleus.Cinema( ek );
78 ek += tkin;
79 modifiedOriginal.SetKineticEnergy( ek*MeV );
80 G4double et = ek + amas;
81 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
82 G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
83 if (pp > 0.0) {
84 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
85 modifiedOriginal.SetMomentum( momentum * (p/pp) );
86 }
87
88 // calculate black track energies
89 tkin = targetNucleus.EvaporationEffects( ek );
90 ek -= tkin;
91 modifiedOriginal.SetKineticEnergy( ek*MeV );
92 et = ek + amas;
93 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
94 pp = modifiedOriginal.GetMomentum().mag()/MeV;
95 if (pp > 0.0) {
96 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
97 modifiedOriginal.SetMomentum( momentum * (p/pp) );
98 }
99
100 G4ReactionProduct currentParticle = modifiedOriginal;
101 G4ReactionProduct targetParticle;
102 targetParticle = *originalTarget;
103 currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
104 targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
105 G4bool incidentHasChanged = false;
106 G4bool targetHasChanged = false;
107 G4bool quasiElastic = false;
108 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
109 G4int vecLen = 0;
110 vec.Initialize( 0 );
111
112 const G4double cutOff = 0.1;
113 if (currentParticle.GetKineticEnergy()/MeV > cutOff)
114 Cascade(vec, vecLen,
115 originalIncident, currentParticle, targetParticle,
116 incidentHasChanged, targetHasChanged, quasiElastic);
117
118 try {
119 CalculateMomenta(vec, vecLen, originalIncident, originalTarget,
120 modifiedOriginal, targetNucleus, currentParticle,
121 targetParticle, incidentHasChanged, targetHasChanged,
122 quasiElastic);
123 }
125 {
126 aR.Report(G4cout);
127 throw G4HadReentrentException(__FILE__, __LINE__, "Bailing out");
128 }
129 SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged);
130
131 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
132 delete originalTarget;
133 return &theParticleChange;
134}
135
136
137void G4LEAntiKaonZeroInelastic::Cascade(
139 G4int& vecLen,
140 const G4HadProjectile *originalIncident,
141 G4ReactionProduct &currentParticle,
142 G4ReactionProduct &targetParticle,
143 G4bool &incidentHasChanged,
144 G4bool &targetHasChanged,
145 G4bool &quasiElastic)
146{
147 // derived from original FORTRAN code CASK0B by H. Fesefeldt (13-Sep-1987)
148 //
149 // K0Long undergoes interaction with nucleon within a nucleus. Check if it is
150 // energetically possible to produce pions/kaons. In not, assume nuclear excitation
151 // occurs and input particle is degraded in energy. No other particles are produced.
152 // If reaction is possible, find the correct number of pions/protons/neutrons
153 // produced using an interpolation to multiplicity data. Replace some pions or
154 // protons/neutrons by kaons or strange baryons according to the average
155 // multiplicity per Inelastic reaction.
156
157 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
158 const G4double etOriginal = originalIncident->Get4Momentum().e()/MeV;
159 const G4double pOriginal = originalIncident->Get4Momentum().vect().mag()/MeV;
160 const G4double targetMass = targetParticle.GetMass()/MeV;
161 G4double centerofmassEnergy = std::sqrt(mOriginal*mOriginal +
162 targetMass*targetMass +
163 2.0*targetMass*etOriginal );
164 G4double availableEnergy = centerofmassEnergy - (targetMass+mOriginal);
165
166 static G4bool first = true;
167 const G4int numMul = 1200;
168 const G4int numSec = 60;
169 static G4double protmul[numMul], protnorm[numSec]; // proton constants
170 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
171
172 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
173 G4int counter;
174 G4int nt = 0;
175 G4int npos = 0, nneg = 0, nzero = 0;
176 const G4double c = 1.25;
177 const G4double b[] = { 0.7, 0.7 };
178 if (first) { // Computation of normalization constants will only be done once
179 first = false;
180 G4int i;
181 for (i = 0; i < numMul; ++i) protmul[i] = 0.0;
182 for (i = 0; i < numSec; ++i) protnorm[i] = 0.0;
183 counter = -1;
184 for (npos = 0; npos < numSec/3; ++npos) {
185 for (nneg = std::max(0,npos - 2); nneg <= npos; ++nneg) {
186 for (nzero = 0; nzero < numSec/3; ++nzero) {
187 if (++counter < numMul) {
188 nt = npos + nneg + nzero;
189 if (nt > 0 && nt <= numSec) {
190 protmul[counter] = Pmltpc(npos, nneg, nzero, nt, b[0], c);
191 protnorm[nt-1] += protmul[counter];
192 }
193 }
194 }
195 }
196 }
197
198 for (i = 0; i < numMul; ++i) neutmul[i] = 0.0;
199 for (i = 0; i < numSec; ++i) neutnorm[i] = 0.0;
200 counter = -1;
201 for (npos = 0; npos < (numSec/3); ++npos) {
202 for (nneg = std::max(0,npos-1); nneg <= (npos+1); ++nneg) {
203 for (nzero = 0; nzero < numSec/3; ++nzero) {
204 if (++counter < numMul) {
205 nt = npos + nneg + nzero;
206 if (nt > 0 && nt <= numSec) {
207 neutmul[counter] = Pmltpc(npos, nneg, nzero, nt, b[1], c);
208 neutnorm[nt-1] += neutmul[counter];
209 }
210 }
211 }
212 }
213 }
214
215 for (i = 0; i < numSec; ++i) {
216 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
217 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
218 }
219 } // end of initialization
220
221 const G4double expxu = 82.; // upper bound for arg. of exp
222 const G4double expxl = -expxu; // lower bound for arg. of exp
235 const G4double cech[] = {1.,1.,1.,0.70,0.60,0.55,0.35,0.25,0.18,0.15};
236 G4int iplab = G4int(std::min( 9.0, 5.0*pOriginal*MeV/GeV ));
237 if ((pOriginal*MeV/GeV <= 2.0) && (G4UniformRand() < cech[iplab]) ) {
238 npos = nneg = nzero = nt = 0;
239 iplab = G4int(std::min( 19.0, pOriginal*MeV/GeV*10.0 ));
240 const G4double cnk0[] = {0.17,0.18,0.17,0.24,0.26,0.20,0.22,0.21,0.34,0.45,
241 0.58,0.55,0.36,0.29,0.29,0.32,0.32,0.33,0.33,0.33};
242 if (G4UniformRand() > cnk0[iplab]) {
243 G4double ran = G4UniformRand();
244 if (ran < 0.25) {
245 // k0Long n --> pi- s+
246 if (targetParticle.GetDefinition() == aNeutron) {
247 currentParticle.SetDefinitionAndUpdateE(aPiMinus);
248 targetParticle.SetDefinitionAndUpdateE(aSigmaPlus);
249 incidentHasChanged = true;
250 targetHasChanged = true;
251 }
252 } else if( ran < 0.50 ) {
253 // k0Long p --> pi+ s0 or k0Long n --> pi0 s0
254 if( targetParticle.GetDefinition() == aNeutron )
255 currentParticle.SetDefinitionAndUpdateE( aPiZero );
256 else
257 currentParticle.SetDefinitionAndUpdateE( aPiPlus );
258 targetParticle.SetDefinitionAndUpdateE( aSigmaZero );
259 incidentHasChanged = true;
260 targetHasChanged = true;
261 } else if (ran < 0.75) {
262 // k0Long n --> pi+ s-
263 if( targetParticle.GetDefinition() == aNeutron )
264 {
265 currentParticle.SetDefinitionAndUpdateE( aPiPlus );
266 targetParticle.SetDefinitionAndUpdateE( aSigmaMinus );
267 incidentHasChanged = true;
268 targetHasChanged = true;
269 }
270 } else {
271 // k0Long p --> pi+ L or k0Long n --> pi0 L
272 if( targetParticle.GetDefinition() == aNeutron )
273 currentParticle.SetDefinitionAndUpdateE( aPiZero );
274 else
275 currentParticle.SetDefinitionAndUpdateE( aPiPlus );
276 targetParticle.SetDefinitionAndUpdateE( aLambda );
277 incidentHasChanged = true;
278 targetHasChanged = true;
279 }
280 } else {
281 // ran <= cnk0
282 quasiElastic = true;
283 if (targetParticle.GetDefinition() == aNeutron) {
284 currentParticle.SetDefinitionAndUpdateE( aKaonMinus );
285 targetParticle.SetDefinitionAndUpdateE( aProton );
286 incidentHasChanged = true;
287 targetHasChanged = true;
288 }
289 }
290 } else {
291 // (pOriginal > 2.0*GeV) || (random number >= cech[iplab])
292 if (availableEnergy < aPiPlus->GetPDGMass()/MeV) {
293 quasiElastic = true;
294 return;
295 }
296 G4double n, anpn;
297 GetNormalizationConstant( availableEnergy, n, anpn );
298 G4double ran = G4UniformRand();
299 G4double dum, test, excs = 0.0;
300 if (targetParticle.GetDefinition() == aProton) {
301 counter = -1;
302 for (npos = 0; (npos < numSec/3) && (ran >= excs); ++npos) {
303 for (nneg = std::max(0,npos-2); nneg <= npos && ran >= excs; ++nneg) {
304 for (nzero = 0; nzero < numSec/3 && ran >= excs; ++nzero) {
305 if (++counter < numMul) {
306 nt = npos + nneg +nzero;
307 if (nt > 0 && nt <= numSec) {
308 test = std::exp(std::min(expxu,
309 std::max(expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
310 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
311 if (std::fabs(dum) < 1.0) {
312 if( test >= 1.0e-10 )excs += dum*test;
313 } else {
314 excs += dum*test;
315 }
316 }
317 }
318 }
319 }
320 }
321 if (ran >= excs) {
322 // 3 previous loops continued to the end
323 quasiElastic = true;
324 return;
325 }
326 npos--; nneg--; nzero--;
327 switch (npos - nneg)
328 {
329 case 1:
330 if (G4UniformRand() < 0.5) {
331 currentParticle.SetDefinitionAndUpdateE(aKaonMinus);
332 incidentHasChanged = true;
333 } else {
334 targetParticle.SetDefinitionAndUpdateE(aNeutron);
335 targetHasChanged = true;
336 }
337 case 0:
338 break;
339 default:
340 currentParticle.SetDefinitionAndUpdateE(aKaonMinus);
341 targetParticle.SetDefinitionAndUpdateE(aNeutron);
342 incidentHasChanged = true;
343 targetHasChanged = true;
344 break;
345 }
346 } else {
347 // target must be a neutron
348 counter = -1;
349 for (npos = 0; npos < numSec/3 && ran >= excs; ++npos) {
350 for (nneg = std::max(0,npos-1); nneg <= (npos+1) && ran >= excs; ++nneg) {
351 for (nzero = 0; nzero < numSec/3 && ran >= excs; ++nzero) {
352 if (++counter < numMul) {
353 nt = npos + nneg + nzero;
354 if (nt > 0 && nt <= numSec) {
355 test = std::exp(std::min(expxu,
356 std::max(expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
357 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
358 if (std::fabs(dum) < 1.0) {
359 if (test >= 1.0e-10) excs += dum*test;
360 } else {
361 excs += dum*test;
362 }
363 }
364 }
365 }
366 }
367 }
368 if (ran >= excs) {
369 // 3 previous loops continued to the end
370 quasiElastic = true;
371 return;
372 }
373 npos--; nneg--; nzero--;
374 switch (npos - nneg)
375 {
376 case 0:
377 currentParticle.SetDefinitionAndUpdateE(aKaonMinus);
378 targetParticle.SetDefinitionAndUpdateE(aProton);
379 incidentHasChanged = true;
380 targetHasChanged = true;
381 break;
382 case 1:
383 currentParticle.SetDefinitionAndUpdateE(aKaonMinus);
384 incidentHasChanged = true;
385 break;
386 default:
387 targetParticle.SetDefinitionAndUpdateE(aProton);
388 targetHasChanged = true;
389 break;
390 }
391 }
392
393 if (G4UniformRand() >= 0.5) {
394 if (currentParticle.GetDefinition() == aKaonMinus &&
395 targetParticle.GetDefinition() == aNeutron) {
396 ran = G4UniformRand();
397 if (ran < 0.68) {
398 currentParticle.SetDefinitionAndUpdateE(aPiMinus);
399 targetParticle.SetDefinitionAndUpdateE(aLambda);
400 } else if (ran < 0.84) {
401 currentParticle.SetDefinitionAndUpdateE(aPiMinus);
402 targetParticle.SetDefinitionAndUpdateE(aSigmaZero);
403 } else {
404 currentParticle.SetDefinitionAndUpdateE(aPiZero);
405 targetParticle.SetDefinitionAndUpdateE(aSigmaMinus);
406 }
407 } else if ((currentParticle.GetDefinition() == aKaonZS ||
408 currentParticle.GetDefinition() == aKaonZL) &&
409 targetParticle.GetDefinition() == aProton) {
410 ran = G4UniformRand();
411 if (ran < 0.68) {
412 currentParticle.SetDefinitionAndUpdateE(aPiPlus);
413 targetParticle.SetDefinitionAndUpdateE(aLambda);
414 } else if (ran < 0.84) {
415 currentParticle.SetDefinitionAndUpdateE(aPiZero);
416 targetParticle.SetDefinitionAndUpdateE(aSigmaPlus);
417 } else {
418 currentParticle.SetDefinitionAndUpdateE(aPiPlus);
419 targetParticle.SetDefinitionAndUpdateE(aSigmaZero);
420 }
421 } else {
422 ran = G4UniformRand();
423 if (ran < 0.67) {
424 currentParticle.SetDefinitionAndUpdateE(aPiZero);
425 targetParticle.SetDefinitionAndUpdateE(aLambda);
426 } else if (ran < 0.78) {
427 currentParticle.SetDefinitionAndUpdateE(aPiMinus);
428 targetParticle.SetDefinitionAndUpdateE(aSigmaPlus);
429 } else if (ran < 0.89) {
430 currentParticle.SetDefinitionAndUpdateE(aPiZero);
431 targetParticle.SetDefinitionAndUpdateE(aSigmaZero);
432 } else {
433 currentParticle.SetDefinitionAndUpdateE(aPiPlus);
434 targetParticle.SetDefinitionAndUpdateE(aSigmaMinus);
435 }
436 }
437 incidentHasChanged = true;
438 targetHasChanged = true;
439 }
440 }
441
442 if (currentParticle.GetDefinition() == aKaonZL) {
443 if (G4UniformRand() >= 0.5) {
444 currentParticle.SetDefinitionAndUpdateE(aKaonZS);
445 incidentHasChanged = true;
446 }
447 }
448 if (targetParticle.GetDefinition() == aKaonZL) {
449 if (G4UniformRand() >= 0.5) {
450 targetParticle.SetDefinitionAndUpdateE(aKaonZS);
451 targetHasChanged = true;
452 }
453 }
454 SetUpPions(npos, nneg, nzero, vec, vecLen);
455 return;
456}
457
458 /* end of file */
459
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
double mag() const
Hep3Vector vect() const
G4ParticleDefinition * GetDefinition() const
void Initialize(G4int items)
Definition: G4FastVector.hh:63
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
void Report(std::ostream &aS)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen)
void CalculateMomenta(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void DoIsotopeCounting(const G4HadProjectile *theProjectile, const G4Nucleus &aNucleus)
void SetUpChange(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:113
static G4KaonZeroLong * KaonZeroLong()
static G4KaonZeroShort * KaonZeroShort()
virtual void ModelDescription(std::ostream &outFile) const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
static G4Lambda * Lambda()
Definition: G4Lambda.cc:108
const G4String & GetName() const
Definition: G4Material.hh:177
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
const G4String & GetParticleName() const
static G4PionMinus * PionMinus()
Definition: G4PionMinus.cc:98
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static G4PionZero * PionZero()
Definition: G4PionZero.cc:104
static G4Proton * Proton()
Definition: G4Proton.cc:93
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4ParticleDefinition * GetDefinition() const
G4double GetMass() const
static G4SigmaMinus * SigmaMinus()
static G4SigmaPlus * SigmaPlus()
Definition: G4SigmaPlus.cc:108
static G4SigmaZero * SigmaZero()
Definition: G4SigmaZero.cc:99
const G4double pi