Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4UrbanMscModel96.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28//
29// GEANT4 Class file
30//
31//
32// File name: G4UrbanMscModel96
33//
34// Author: Laszlo Urban
35//
36// Creation date: 26.09.2012
37//
38// Created from G4UrbanMscModel95
39//
40// New parametrization for theta0
41// Correction for very small step length
42//
43// Class Description:
44//
45// Implementation of the model of multiple scattering based on
46// H.W.Lewis Phys Rev 78 (1950) 526 and others
47
48// -------------------------------------------------------------------
49// In its present form the model can be used for simulation
50// of the e-/e+ multiple scattering
51//
52
53
54//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
55//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
56
57#include "G4UrbanMscModel96.hh"
59#include "G4SystemOfUnits.hh"
60#include "Randomize.hh"
61#include "G4Electron.hh"
62#include "G4LossTableManager.hh"
64
65#include "G4Poisson.hh"
66#include "globals.hh"
67
68//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
69
70using namespace std;
71
73 : G4VMscModel(nam)
74{
75 masslimite = 0.6*MeV;
76 lambdalimit = 1.*mm;
77 fr = 0.02;
78 taubig = 8.0;
79 tausmall = 1.e-16;
80 taulim = 1.e-6;
81 currentTau = taulim;
82 tlimitminfix = 1.e-6*mm;
83 stepmin = tlimitminfix;
84 smallstep = 1.e10;
85 currentRange = 0. ;
86 rangeinit = 0.;
87 tlimit = 1.e10*mm;
88 tlimitmin = 10.*tlimitminfix;
89 tgeom = 1.e50*mm;
90 geombig = 1.e50*mm;
91 geommin = 1.e-3*mm;
92 geomlimit = geombig;
93 presafety = 0.*mm;
94 //facsafety = 0.50 ;
95
96 y = 0.;
97 z = 0.;
98
99 Zold = 0.;
100 Zeff = 1.;
101 Z2 = 1.;
102 Z23 = 1.;
103 lnZ = 0.;
104
105 coeffc1 = 0.;
106 coeffc2 = 0.;
107 coeffc3 = 0.;
108 coeffc4 = 0.;
109 scr1ini = fine_structure_const*fine_structure_const*
110 electron_mass_c2*electron_mass_c2/(0.885*0.885*4.*pi);
111 scr2ini = 3.76*fine_structure_const*fine_structure_const;
112 scr1 = 0.;
113 scr2 = 0.;
114
115 theta0max = pi/6.;
116 rellossmax = 0.50;
117 third = 1./3.;
118 particle = 0;
119 theManager = G4LossTableManager::Instance();
120 firstStep = true;
121 inside = false;
122 insideskin = false;
123
124 skindepth = skin*stepmin;
125
126 mass = proton_mass_c2;
127 charge = ChargeSquare = 1.0;
128 currentKinEnergy = currentRadLength = lambda0 = lambdaeff = tPathLength
129 = zPathLength = par1 = par2 = par3 = 0;
130
131 currentMaterialIndex = -1;
132 fParticleChange = 0;
133 couple = 0;
134 SetSampleZ(true);
135}
136
137//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
138
140{}
141
142//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
143
145 const G4DataVector&)
146{
147 skindepth = skin*stepmin;
148 // trackID = -1;
149
150 // set values of some data members
151 SetParticle(p);
152
153 if(p->GetPDGMass() > MeV) {
154 G4cout << "### WARNING: G4UrbanMscModel96 model is used for "
155 << p->GetParticleName() << " !!! " << G4endl;
156 G4cout << "### This model should be used only for e+-"
157 << G4endl;
158 }
159
160 fParticleChange = GetParticleChangeForMSC(p);
161
162 //samplez = true;
163 //G4cout << "### G4UrbanMscModel96::Initialise done!" << G4endl;
164}
165
166//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
167
169 const G4ParticleDefinition* part,
170 G4double KineticEnergy,
171 G4double AtomicNumber,G4double,
173{
174 const G4double sigmafactor = twopi*classic_electr_radius*classic_electr_radius;
175 const G4double epsfactor = 2.*electron_mass_c2*electron_mass_c2*
176 Bohr_radius*Bohr_radius/(hbarc*hbarc);
177 const G4double epsmin = 1.e-4 , epsmax = 1.e10;
178
179 const G4double Zdat[15] = { 4., 6., 13., 20., 26., 29., 32., 38., 47.,
180 50., 56., 64., 74., 79., 82. };
181
182 const G4double Tdat[22] = { 100*eV, 200*eV, 400*eV, 700*eV,
183 1*keV, 2*keV, 4*keV, 7*keV,
184 10*keV, 20*keV, 40*keV, 70*keV,
185 100*keV, 200*keV, 400*keV, 700*keV,
186 1*MeV, 2*MeV, 4*MeV, 7*MeV,
187 10*MeV, 20*MeV};
188
189 // corr. factors for e-/e+ lambda for T <= Tlim
190 G4double celectron[15][22] =
191 {{1.125,1.072,1.051,1.047,1.047,1.050,1.052,1.054,
192 1.054,1.057,1.062,1.069,1.075,1.090,1.105,1.111,
193 1.112,1.108,1.100,1.093,1.089,1.087 },
194 {1.408,1.246,1.143,1.096,1.077,1.059,1.053,1.051,
195 1.052,1.053,1.058,1.065,1.072,1.087,1.101,1.108,
196 1.109,1.105,1.097,1.090,1.086,1.082 },
197 {2.833,2.268,1.861,1.612,1.486,1.309,1.204,1.156,
198 1.136,1.114,1.106,1.106,1.109,1.119,1.129,1.132,
199 1.131,1.124,1.113,1.104,1.099,1.098 },
200 {3.879,3.016,2.380,2.007,1.818,1.535,1.340,1.236,
201 1.190,1.133,1.107,1.099,1.098,1.103,1.110,1.113,
202 1.112,1.105,1.096,1.089,1.085,1.098 },
203 {6.937,4.330,2.886,2.256,1.987,1.628,1.395,1.265,
204 1.203,1.122,1.080,1.065,1.061,1.063,1.070,1.073,
205 1.073,1.070,1.064,1.059,1.056,1.056 },
206 {9.616,5.708,3.424,2.551,2.204,1.762,1.485,1.330,
207 1.256,1.155,1.099,1.077,1.070,1.068,1.072,1.074,
208 1.074,1.070,1.063,1.059,1.056,1.052 },
209 {11.72,6.364,3.811,2.806,2.401,1.884,1.564,1.386,
210 1.300,1.180,1.112,1.082,1.073,1.066,1.068,1.069,
211 1.068,1.064,1.059,1.054,1.051,1.050 },
212 {18.08,8.601,4.569,3.183,2.662,2.025,1.646,1.439,
213 1.339,1.195,1.108,1.068,1.053,1.040,1.039,1.039,
214 1.039,1.037,1.034,1.031,1.030,1.036 },
215 {18.22,10.48,5.333,3.713,3.115,2.367,1.898,1.631,
216 1.498,1.301,1.171,1.105,1.077,1.048,1.036,1.033,
217 1.031,1.028,1.024,1.022,1.021,1.024 },
218 {14.14,10.65,5.710,3.929,3.266,2.453,1.951,1.669,
219 1.528,1.319,1.178,1.106,1.075,1.040,1.027,1.022,
220 1.020,1.017,1.015,1.013,1.013,1.020 },
221 {14.11,11.73,6.312,4.240,3.478,2.566,2.022,1.720,
222 1.569,1.342,1.186,1.102,1.065,1.022,1.003,0.997,
223 0.995,0.993,0.993,0.993,0.993,1.011 },
224 {22.76,20.01,8.835,5.287,4.144,2.901,2.219,1.855,
225 1.677,1.410,1.224,1.121,1.073,1.014,0.986,0.976,
226 0.974,0.972,0.973,0.974,0.975,0.987 },
227 {50.77,40.85,14.13,7.184,5.284,3.435,2.520,2.059,
228 1.837,1.512,1.283,1.153,1.091,1.010,0.969,0.954,
229 0.950,0.947,0.949,0.952,0.954,0.963 },
230 {65.87,59.06,15.87,7.570,5.567,3.650,2.682,2.182,
231 1.939,1.579,1.325,1.178,1.108,1.014,0.965,0.947,
232 0.941,0.938,0.940,0.944,0.946,0.954 },
233 {55.60,47.34,15.92,7.810,5.755,3.767,2.760,2.239,
234 1.985,1.609,1.343,1.188,1.113,1.013,0.960,0.939,
235 0.933,0.930,0.933,0.936,0.939,0.949 }};
236
237 G4double cpositron[15][22] = {
238 {2.589,2.044,1.658,1.446,1.347,1.217,1.144,1.110,
239 1.097,1.083,1.080,1.086,1.092,1.108,1.123,1.131,
240 1.131,1.126,1.117,1.108,1.103,1.100 },
241 {3.904,2.794,2.079,1.710,1.543,1.325,1.202,1.145,
242 1.122,1.096,1.089,1.092,1.098,1.114,1.130,1.137,
243 1.138,1.132,1.122,1.113,1.108,1.102 },
244 {7.970,6.080,4.442,3.398,2.872,2.127,1.672,1.451,
245 1.357,1.246,1.194,1.179,1.178,1.188,1.201,1.205,
246 1.203,1.190,1.173,1.159,1.151,1.145 },
247 {9.714,7.607,5.747,4.493,3.815,2.777,2.079,1.715,
248 1.553,1.353,1.253,1.219,1.211,1.214,1.225,1.228,
249 1.225,1.210,1.191,1.175,1.166,1.174 },
250 {17.97,12.95,8.628,6.065,4.849,3.222,2.275,1.820,
251 1.624,1.382,1.259,1.214,1.202,1.202,1.214,1.219,
252 1.217,1.203,1.184,1.169,1.160,1.151 },
253 {24.83,17.06,10.84,7.355,5.767,3.707,2.546,1.996,
254 1.759,1.465,1.311,1.252,1.234,1.228,1.238,1.241,
255 1.237,1.222,1.201,1.184,1.174,1.159 },
256 {23.26,17.15,11.52,8.049,6.375,4.114,2.792,2.155,
257 1.880,1.535,1.353,1.281,1.258,1.247,1.254,1.256,
258 1.252,1.234,1.212,1.194,1.183,1.170 },
259 {22.33,18.01,12.86,9.212,7.336,4.702,3.117,2.348,
260 2.015,1.602,1.385,1.297,1.268,1.251,1.256,1.258,
261 1.254,1.237,1.214,1.195,1.185,1.179 },
262 {33.91,24.13,15.71,10.80,8.507,5.467,3.692,2.808,
263 2.407,1.873,1.564,1.425,1.374,1.330,1.324,1.320,
264 1.312,1.288,1.258,1.235,1.221,1.205 },
265 {32.14,24.11,16.30,11.40,9.015,5.782,3.868,2.917,
266 2.490,1.925,1.596,1.447,1.391,1.342,1.332,1.327,
267 1.320,1.294,1.264,1.240,1.226,1.214 },
268 {29.51,24.07,17.19,12.28,9.766,6.238,4.112,3.066,
269 2.602,1.995,1.641,1.477,1.414,1.356,1.342,1.336,
270 1.328,1.302,1.270,1.245,1.231,1.233 },
271 {38.19,30.85,21.76,15.35,12.07,7.521,4.812,3.498,
272 2.926,2.188,1.763,1.563,1.484,1.405,1.382,1.371,
273 1.361,1.330,1.294,1.267,1.251,1.239 },
274 {49.71,39.80,27.96,19.63,15.36,9.407,5.863,4.155,
275 3.417,2.478,1.944,1.692,1.589,1.480,1.441,1.423,
276 1.409,1.372,1.330,1.298,1.280,1.258 },
277 {59.25,45.08,30.36,20.83,16.15,9.834,6.166,4.407,
278 3.641,2.648,2.064,1.779,1.661,1.531,1.482,1.459,
279 1.442,1.400,1.354,1.319,1.299,1.272 },
280 {56.38,44.29,30.50,21.18,16.51,10.11,6.354,4.542,
281 3.752,2.724,2.116,1.817,1.692,1.554,1.499,1.474,
282 1.456,1.412,1.364,1.328,1.307,1.282 }};
283
284 //data/corrections for T > Tlim
285 G4double Tlim = 10.*MeV;
286 G4double beta2lim = Tlim*(Tlim+2.*electron_mass_c2)/
287 ((Tlim+electron_mass_c2)*(Tlim+electron_mass_c2));
288 G4double bg2lim = Tlim*(Tlim+2.*electron_mass_c2)/
289 (electron_mass_c2*electron_mass_c2);
290
291 G4double sig0[15] = {0.2672*barn, 0.5922*barn, 2.653*barn, 6.235*barn,
292 11.69*barn , 13.24*barn , 16.12*barn, 23.00*barn ,
293 35.13*barn , 39.95*barn , 50.85*barn, 67.19*barn ,
294 91.15*barn , 104.4*barn , 113.1*barn};
295
296 G4double hecorr[15] = {120.70, 117.50, 105.00, 92.92, 79.23, 74.510, 68.29,
297 57.39, 41.97, 36.14, 24.53, 10.21, -7.855, -16.84,
298 -22.30};
299
300 G4double sigma;
301 SetParticle(part);
302
303 Z23 = pow(AtomicNumber,2./3.);
304
305 // correction if particle .ne. e-/e+
306 // compute equivalent kinetic energy
307 // lambda depends on p*beta ....
308
309 G4double eKineticEnergy = KineticEnergy;
310
311 if(mass > electron_mass_c2)
312 {
313 G4double TAU = KineticEnergy/mass ;
314 G4double c = mass*TAU*(TAU+2.)/(electron_mass_c2*(TAU+1.)) ;
315 G4double w = c-2. ;
316 G4double tau = 0.5*(w+sqrt(w*w+4.*c)) ;
317 eKineticEnergy = electron_mass_c2*tau ;
318 }
319
320 G4double eTotalEnergy = eKineticEnergy + electron_mass_c2 ;
321 G4double beta2 = eKineticEnergy*(eTotalEnergy+electron_mass_c2)
322 /(eTotalEnergy*eTotalEnergy);
323 G4double bg2 = eKineticEnergy*(eTotalEnergy+electron_mass_c2)
324 /(electron_mass_c2*electron_mass_c2);
325
326 G4double eps = epsfactor*bg2/Z23;
327
328 if (eps<epsmin) sigma = 2.*eps*eps;
329 else if(eps<epsmax) sigma = log(1.+2.*eps)-2.*eps/(1.+2.*eps);
330 else sigma = log(2.*eps)-1.+1./eps;
331
332 sigma *= ChargeSquare*AtomicNumber*AtomicNumber/(beta2*bg2);
333
334 // interpolate in AtomicNumber and beta2
335 G4double c1,c2,cc1,cc2,corr;
336
337 // get bin number in Z
338 G4int iZ = 14;
339 while ((iZ>=0)&&(Zdat[iZ]>=AtomicNumber)) iZ -= 1;
340 if (iZ==14) iZ = 13;
341 if (iZ==-1) iZ = 0 ;
342
343 G4double ZZ1 = Zdat[iZ];
344 G4double ZZ2 = Zdat[iZ+1];
345 G4double ratZ = (AtomicNumber-ZZ1)*(AtomicNumber+ZZ1)/
346 ((ZZ2-ZZ1)*(ZZ2+ZZ1));
347
348 if(eKineticEnergy <= Tlim)
349 {
350 // get bin number in T (beta2)
351 G4int iT = 21;
352 while ((iT>=0)&&(Tdat[iT]>=eKineticEnergy)) iT -= 1;
353 if(iT==21) iT = 20;
354 if(iT==-1) iT = 0 ;
355
356 // calculate betasquare values
357 G4double T = Tdat[iT], E = T + electron_mass_c2;
358 G4double b2small = T*(E+electron_mass_c2)/(E*E);
359
360 T = Tdat[iT+1]; E = T + electron_mass_c2;
361 G4double b2big = T*(E+electron_mass_c2)/(E*E);
362 G4double ratb2 = (beta2-b2small)/(b2big-b2small);
363
364 if (charge < 0.)
365 {
366 c1 = celectron[iZ][iT];
367 c2 = celectron[iZ+1][iT];
368 cc1 = c1+ratZ*(c2-c1);
369
370 c1 = celectron[iZ][iT+1];
371 c2 = celectron[iZ+1][iT+1];
372 cc2 = c1+ratZ*(c2-c1);
373
374 corr = cc1+ratb2*(cc2-cc1);
375
376 sigma *= sigmafactor/corr;
377 }
378 else
379 {
380 c1 = cpositron[iZ][iT];
381 c2 = cpositron[iZ+1][iT];
382 cc1 = c1+ratZ*(c2-c1);
383
384 c1 = cpositron[iZ][iT+1];
385 c2 = cpositron[iZ+1][iT+1];
386 cc2 = c1+ratZ*(c2-c1);
387
388 corr = cc1+ratb2*(cc2-cc1);
389
390 sigma *= sigmafactor/corr;
391 }
392 }
393 else
394 {
395 c1 = bg2lim*sig0[iZ]*(1.+hecorr[iZ]*(beta2-beta2lim))/bg2;
396 c2 = bg2lim*sig0[iZ+1]*(1.+hecorr[iZ+1]*(beta2-beta2lim))/bg2;
397 if((AtomicNumber >= ZZ1) && (AtomicNumber <= ZZ2))
398 sigma = c1+ratZ*(c2-c1) ;
399 else if(AtomicNumber < ZZ1)
400 sigma = AtomicNumber*AtomicNumber*c1/(ZZ1*ZZ1);
401 else if(AtomicNumber > ZZ2)
402 sigma = AtomicNumber*AtomicNumber*c2/(ZZ2*ZZ2);
403 }
404 return sigma;
405
406}
407
408//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
409
411{
412 SetParticle(track->GetDynamicParticle()->GetDefinition());
413 firstStep = true;
414 inside = false;
415 insideskin = false;
416 tlimit = geombig;
417}
418
419//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
420
422 const G4Track& track,
423 G4double& currentMinimalStep)
424{
425 tPathLength = currentMinimalStep;
426 const G4DynamicParticle* dp = track.GetDynamicParticle();
427
428 G4StepPoint* sp = track.GetStep()->GetPreStepPoint();
429 G4StepStatus stepStatus = sp->GetStepStatus();
430 couple = track.GetMaterialCutsCouple();
431 SetCurrentCouple(couple);
432 currentMaterialIndex = couple->GetIndex();
433 currentKinEnergy = dp->GetKineticEnergy();
434 currentRange = GetRange(particle,currentKinEnergy,couple);
435 lambda0 = GetTransportMeanFreePath(particle,currentKinEnergy);
436
437 if(tPathLength > currentRange) { tPathLength = currentRange; }
438
439 // stop here if small range particle
440 if(inside || tPathLength < tlimitminfix) {
441 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
442 }
443
444 presafety = sp->GetSafety();
445 /*
446 G4cout << "G4Urban96::StepLimit tPathLength= "
447 <<tPathLength<<" safety= " << presafety
448 << " range= " <<currentRange<< " lambda= "<<lambda0
449 << " Alg: " << steppingAlgorithm <<G4endl;
450 */
451 // far from geometry boundary
452 if(currentRange < presafety)
453 {
454 inside = true;
455 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
456 }
457
458 // standard version
459 //
461 {
462 //compute geomlimit and presafety
463 geomlimit = ComputeGeomLimit(track, presafety, currentRange);
464
465 // is it far from boundary ?
466 if(currentRange < presafety)
467 {
468 inside = true;
469 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
470 }
471
472 smallstep += 1.;
473 insideskin = false;
474
475 if(firstStep || (stepStatus == fGeomBoundary))
476 {
477 rangeinit = currentRange;
478 if(firstStep) smallstep = 1.e10;
479 else smallstep = 1.;
480
481 //define stepmin here (it depends on lambda!)
482 //rough estimation of lambda_elastic/lambda_transport
483 G4double rat = currentKinEnergy/MeV ;
484 rat = 1.e-3/(rat*(10.+rat)) ;
485 //stepmin ~ lambda_elastic
486 stepmin = rat*lambda0;
487 skindepth = skin*stepmin;
488 //define tlimitmin
489 tlimitmin = 10.*stepmin;
490 if(tlimitmin < tlimitminfix) tlimitmin = tlimitminfix;
491 //G4cout << "rangeinit= " << rangeinit << " stepmin= " << stepmin
492 // << " tlimitmin= " << tlimitmin << " geomlimit= " << geomlimit <<G4endl;
493 // constraint from the geometry
494 if((geomlimit < geombig) && (geomlimit > geommin))
495 {
496 // geomlimit is a geometrical step length
497 // transform it to true path length (estimation)
498 if((1.-geomlimit/lambda0) > 0.)
499 geomlimit = -lambda0*log(1.-geomlimit/lambda0)+tlimitmin ;
500
501 if(stepStatus == fGeomBoundary)
502 tgeom = geomlimit/facgeom;
503 else
504 tgeom = 2.*geomlimit/facgeom;
505 }
506 else
507 tgeom = geombig;
508 }
509
510
511 //step limit
512 tlimit = facrange*rangeinit;
513
514 //lower limit for tlimit
515 if(tlimit < tlimitmin) tlimit = tlimitmin;
516
517 if(tlimit > tgeom) tlimit = tgeom;
518
519 //G4cout << "tgeom= " << tgeom << " geomlimit= " << geomlimit
520 // << " tlimit= " << tlimit << " presafety= " << presafety << G4endl;
521
522 // shortcut
523 if((tPathLength < tlimit) && (tPathLength < presafety) &&
524 (smallstep >= skin) && (tPathLength < geomlimit-0.999*skindepth))
525 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
526
527 // step reduction near to boundary
528 if(smallstep < skin)
529 {
530 tlimit = stepmin;
531 insideskin = true;
532 }
533 else if(geomlimit < geombig)
534 {
535 if(geomlimit > skindepth)
536 {
537 if(tlimit > geomlimit-0.999*skindepth)
538 tlimit = geomlimit-0.999*skindepth;
539 }
540 else
541 {
542 insideskin = true;
543 if(tlimit > stepmin) tlimit = stepmin;
544 }
545 }
546
547 if(tlimit < stepmin) tlimit = stepmin;
548
549 // randomize 1st step or 1st 'normal' step in volume
550 if(firstStep || ((smallstep == skin) && !insideskin))
551 {
552 G4double temptlimit = tlimit;
553 if(temptlimit > tlimitmin)
554 {
555 do {
556 temptlimit = G4RandGauss::shoot(tlimit,0.3*tlimit);
557 } while ((temptlimit < tlimitmin) ||
558 (temptlimit > 2.*tlimit-tlimitmin));
559 }
560 else
561 temptlimit = tlimitmin;
562 if(tPathLength > temptlimit) tPathLength = temptlimit;
563 }
564 else
565 {
566 if(tPathLength > tlimit) tPathLength = tlimit ;
567 }
568
569 }
570 // for 'normal' simulation with or without magnetic field
571 // there no small step/single scattering at boundaries
572 else if(steppingAlgorithm == fUseSafety)
573 {
574 // compute presafety again if presafety <= 0 and no boundary
575 // i.e. when it is needed for optimization purposes
576 if((stepStatus != fGeomBoundary) && (presafety < tlimitminfix))
577 presafety = ComputeSafety(sp->GetPosition(),tPathLength);
578 /*
579 G4cout << "presafety= " << presafety
580 << " firstStep= " << firstStep
581 << " stepStatus= " << stepStatus
582 << G4endl;
583 */
584 // is far from boundary
585 if(currentRange < presafety)
586 {
587 inside = true;
588 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
589 }
590
591 if(firstStep || stepStatus == fGeomBoundary)
592 {
593 rangeinit = currentRange;
594 fr = facrange;
595 // 9.1 like stepping for e+/e- only (not for muons,hadrons)
596 if(mass < masslimite)
597 {
598 if(lambda0 > currentRange)
599 rangeinit = lambda0;
600 if(lambda0 > lambdalimit)
601 fr *= 0.75+0.25*lambda0/lambdalimit;
602 }
603
604 //lower limit for tlimit
605 G4double rat = currentKinEnergy/MeV ;
606 rat = 1.e-3/(rat*(10.+rat)) ;
607 tlimitmin = 10.*lambda0*rat;
608 if(tlimitmin < tlimitminfix) tlimitmin = tlimitminfix;
609 }
610 //step limit
611 tlimit = fr*rangeinit;
612
613 if(tlimit < facsafety*presafety)
614 tlimit = facsafety*presafety;
615
616 //lower limit for tlimit
617 if(tlimit < tlimitmin) tlimit = tlimitmin;
618
619 if(tPathLength > tlimit) tPathLength = tlimit;
620
621 }
622
623 // version similar to 7.1 (needed for some experiments)
624 else
625 {
626 if (stepStatus == fGeomBoundary)
627 {
628 if (currentRange > lambda0) tlimit = facrange*currentRange;
629 else tlimit = facrange*lambda0;
630
631 if(tlimit < tlimitmin) tlimit = tlimitmin;
632 if(tPathLength > tlimit) tPathLength = tlimit;
633 }
634 }
635 //G4cout << "tPathLength= " << tPathLength
636 // << " currentMinimalStep= " << currentMinimalStep << G4endl;
637 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
638}
639
640//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
641
643{
644 firstStep = false;
645 lambdaeff = lambda0;
646 par1 = -1. ;
647 par2 = par3 = 0. ;
648
649 // do the true -> geom transformation
650 zPathLength = tPathLength;
651
652 // z = t for very small tPathLength
653 if(tPathLength < tlimitminfix) return zPathLength;
654
655 // this correction needed to run MSC with eIoni and eBrem inactivated
656 // and makes no harm for a normal run
657 if(tPathLength > currentRange)
658 tPathLength = currentRange ;
659
660 G4double tau = tPathLength/lambda0 ;
661
662 if ((tau <= tausmall) || insideskin) {
663 zPathLength = tPathLength;
664 if(zPathLength > lambda0) zPathLength = lambda0;
665 return zPathLength;
666 }
667
668 G4double zmean = tPathLength;
669 if (tPathLength < currentRange*dtrl) {
670 if(tau < taulim) zmean = tPathLength*(1.-0.5*tau) ;
671 else zmean = lambda0*(1.-exp(-tau));
672 zPathLength = zmean ;
673 return zPathLength;
674
675 } else if(currentKinEnergy < mass || tPathLength == currentRange) {
676 par1 = 1./currentRange ;
677 par2 = 1./(par1*lambda0) ;
678 par3 = 1.+par2 ;
679 if(tPathLength < currentRange)
680 zmean = (1.-exp(par3*log(1.-tPathLength/currentRange)))/(par1*par3) ;
681 else {
682 zmean = 1./(par1*par3) ;
683 }
684 zPathLength = zmean ;
685 return zPathLength;
686
687 } else {
688 G4double T1 = GetEnergy(particle,currentRange-tPathLength,couple);
689 G4double lambda1 = GetTransportMeanFreePath(particle,T1);
690
691 par1 = (lambda0-lambda1)/(lambda0*tPathLength) ;
692 par2 = 1./(par1*lambda0) ;
693 par3 = 1.+par2 ;
694 zmean = (1.-exp(par3*log(lambda1/lambda0)))/(par1*par3) ;
695 }
696
697 zPathLength = zmean ;
698
699 // sample z
700 if(samplez)
701 {
702 const G4double ztmax = 0.999 ;
703 G4double zt = zmean/tPathLength ;
704
705 if (tPathLength > stepmin && zt < ztmax)
706 {
707 G4double u,cz1;
708 if(zt >= third)
709 {
710 G4double cz = 0.5*(3.*zt-1.)/(1.-zt) ;
711 cz1 = 1.+cz ;
712 G4double u0 = cz/cz1 ;
713 G4double grej ;
714 do {
715 u = exp(log(G4UniformRand())/cz1) ;
716 grej = exp(cz*log(u/u0))*(1.-u)/(1.-u0) ;
717 } while (grej < G4UniformRand()) ;
718 }
719 else
720 {
721 u = 2.*zt*G4UniformRand();
722 }
723 if(u > 1.0) { u = 1.0; }
724 zPathLength = tPathLength*u ;
725 }
726 }
727
728 if(zPathLength > lambda0) { zPathLength = lambda0; }
729 //G4cout << "zPathLength= " << zPathLength << " lambda1= " << lambda0 << G4endl;
730 return zPathLength;
731}
732
733//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
734
736{
737 // step defined other than transportation
738 if(geomStepLength == zPathLength)
739 { return tPathLength; }
740
741 zPathLength = geomStepLength;
742
743 // t = z for very small step
744 if(geomStepLength < tlimitminfix) {
745 tPathLength = geomStepLength;
746
747 // recalculation
748 } else {
749
750 G4double tlength = geomStepLength;
751 if((geomStepLength > lambda0*tausmall) && !insideskin) {
752
753 if(par1 < 0.) {
754 tlength = -lambda0*log(1.-geomStepLength/lambda0) ;
755 } else {
756 if(par1*par3*geomStepLength < 1.) {
757 tlength = (1.-exp(log(1.-par1*par3*geomStepLength)/par3))/par1 ;
758 } else {
759 tlength = currentRange;
760 }
761 }
762 if(tlength < geomStepLength) { tlength = geomStepLength; }
763 else if(tlength > tPathLength) { tlength = tPathLength; }
764 }
765 tPathLength = tlength;
766 }
767 //G4cout << "Urban96::ComputeTrueLength: tPathLength= " << tPathLength
768 // << " step= " << geomStepLength << G4endl;
769 return tPathLength;
770}
771
772//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
773
775 G4double KineticEnergy)
776{
777 // for all particles take the width of the central part
778 // from a parametrization similar to the Highland formula
779 // ( Highland formula: Particle Physics Booklet, July 2002, eq. 26.10)
780 const G4double c_highland = 13.6*MeV ;
781 G4double betacp = sqrt(currentKinEnergy*(currentKinEnergy+2.*mass)*
782 KineticEnergy*(KineticEnergy+2.*mass)/
783 ((currentKinEnergy+mass)*(KineticEnergy+mass)));
784 y = trueStepLength/currentRadLength;
785 G4double theta0 = c_highland*std::abs(charge)*sqrt(y)/betacp;
786 y = log(y);
787 z = log(currentTau)-y;
788
789 // correction factor from e- scattering data
790 G4double corr = 1.0925*exp(8.05922e-2*y)*(1.+1.06221e-2*z);
791 if(y > -5.5) corr += 3.47658e-2*exp(3.*log(y+5.5))*(1.+1.33868*z);
792
793
794 theta0 *= corr ;
795
796 return theta0;
797}
798
799//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
800
803 G4double safety)
804{
805 fDisplacement.set(0.0,0.0,0.0);
806 G4double kineticEnergy = currentKinEnergy;
807 if (tPathLength > currentRange*dtrl) {
808 kineticEnergy = GetEnergy(particle,currentRange-tPathLength,couple);
809 } else {
810 kineticEnergy -= tPathLength*GetDEDX(particle,currentKinEnergy,couple);
811 }
812
813 if((kineticEnergy <= 0.0) || (tPathLength <= tlimitminfix) ||
814 (tPathLength/tausmall < lambda0)) { return fDisplacement; }
815
816 G4double cth = SampleCosineTheta(tPathLength,kineticEnergy);
817
818 // protection against 'bad' cth values
819 if(std::fabs(cth) > 1.) { return fDisplacement; }
820
821 // extra protection agaist high energy particles backscattered
822 if(cth < 1.0 - 1000*tPathLength/lambda0 && kineticEnergy > 20*MeV) {
823 //G4cout << "Warning: large scattering E(MeV)= " << kineticEnergy
824 // << " s(mm)= " << tPathLength/mm
825 // << " 1-cosTheta= " << 1.0 - cth << G4endl;
826 // do Gaussian central scattering
827 if(kineticEnergy > GeV && cth < 0.0) {
829 ed << dynParticle->GetDefinition()->GetParticleName()
830 << " E(MeV)= " << kineticEnergy/MeV
831 << " Step(mm)= " << tPathLength/mm
832 << " in " << CurrentCouple()->GetMaterial()->GetName()
833 << " CosTheta= " << cth
834 << " is too big - the angle is resampled" << G4endl;
835 G4Exception("G4UrbanMscModel96::SampleScattering","em0004",
836 JustWarning, ed,"");
837 }
838 do {
839 cth = 1.0 + 2*log(G4UniformRand())*tPathLength/lambda0;
840 } while(cth < -1.0);
841 }
842
843 G4double sth = sqrt((1.0 - cth)*(1.0 + cth));
844 G4double phi = twopi*G4UniformRand();
845 G4double dirx = sth*cos(phi);
846 G4double diry = sth*sin(phi);
847
848 G4ThreeVector oldDirection = dynParticle->GetMomentumDirection();
849 G4ThreeVector newDirection(dirx,diry,cth);
850 newDirection.rotateUz(oldDirection);
851 fParticleChange->ProposeMomentumDirection(newDirection);
852 /*
853 G4cout << "G4UrbanMscModel96::SampleSecondaries: e(MeV)= " << kineticEnergy
854 << " sinTheta= " << sth << " safety(mm)= " << safety
855 << " trueStep(mm)= " << tPathLength
856 << " geomStep(mm)= " << zPathLength
857 << G4endl;
858 */
859 if (latDisplasment && safety > tlimitminfix) {
860
861 G4double r = SampleDisplacement();
862 /*
863 G4cout << "G4UrbanMscModel96::SampleSecondaries: e(MeV)= " << kineticEnergy
864 << " sinTheta= " << sth << " r(mm)= " << r
865 << " trueStep(mm)= " << tPathLength
866 << " geomStep(mm)= " << zPathLength
867 << G4endl;
868 */
869 if(r > 0.)
870 {
871 G4double latcorr = LatCorrelation();
872 if(latcorr > r) latcorr = r;
873
874 // sample direction of lateral displacement
875 // compute it from the lateral correlation
876 G4double Phi = 0.;
877 if(std::abs(r*sth) < latcorr)
878 Phi = twopi*G4UniformRand();
879 else
880 {
881 G4double psi = std::acos(latcorr/(r*sth));
882 if(G4UniformRand() < 0.5)
883 Phi = phi+psi;
884 else
885 Phi = phi-psi;
886 }
887
888 dirx = std::cos(Phi);
889 diry = std::sin(Phi);
890
891 fDisplacement.set(r*dirx,r*diry,0.0);
892 fDisplacement.rotateUz(oldDirection);
893 }
894 }
895 return fDisplacement;
896}
897
898//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
899
900G4double G4UrbanMscModel96::SampleCosineTheta(G4double trueStepLength,
901 G4double KineticEnergy)
902{
903 G4double cth = 1. ;
904 G4double tau = trueStepLength/lambda0;
905 currentTau = tau;
906 lambdaeff = lambda0;
907
908 Zeff = couple->GetMaterial()->GetTotNbOfElectPerVolume()/
910
911 if(Zold != Zeff)
912 UpdateCache();
913
914 if(insideskin)
915 {
916 //no scattering, single or plural scattering
917 G4double mean = trueStepLength/stepmin ;
918
919 G4int n = G4Poisson(mean);
920 if(n > 0)
921 {
922 //screening (Moliere-Bethe)
923 G4double mom2 = KineticEnergy*(2.*mass+KineticEnergy);
924 G4double beta2 = mom2/((KineticEnergy+mass)*(KineticEnergy+mass));
925 G4double ascr = scr1/mom2;
926 ascr *= 1.13+scr2/beta2;
927 G4double ascr1 = 1.+2.*ascr;
928 G4double bp1=ascr1+1.;
929 G4double bm1=ascr1-1.;
930
931 // single scattering from screened Rutherford x-section
932 G4double ct,st,phi;
933 G4double sx=0.,sy=0.,sz=0.;
934 for(G4int i=1; i<=n; i++)
935 {
936 ct = ascr1-bp1*bm1/(2.*G4UniformRand()+bm1);
937 if(ct < -1.) ct = -1.;
938 if(ct > 1.) ct = 1.;
939 st = sqrt(1.-ct*ct);
940 phi = twopi*G4UniformRand();
941 sx += st*cos(phi);
942 sy += st*sin(phi);
943 sz += ct;
944 }
945 cth = sz/sqrt(sx*sx+sy*sy+sz*sz);
946 }
947 }
948 else
949 {
950 G4double lambda1 = GetTransportMeanFreePath(particle,KineticEnergy);
951 if(std::fabs(lambda1/lambda0 - 1) > 0.01 && lambda1 > 0.)
952 {
953 // mean tau value
954 tau = trueStepLength*log(lambda0/lambda1)/(lambda0-lambda1);
955 }
956
957 currentTau = tau ;
958 lambdaeff = trueStepLength/currentTau;
959 currentRadLength = couple->GetMaterial()->GetRadlen();
960
961 if (tau >= taubig) cth = -1.+2.*G4UniformRand();
962 else if (tau >= tausmall)
963 {
964 // correction for very small step length
965 G4double rat = currentKinEnergy/MeV ;
966 rat = 1.e-3/(rat*(10.+rat)) ;
967 G4double lelastic = rat*lambda0;
968 if(trueStepLength < 5.*lelastic)
969 if(G4UniformRand() < exp(-trueStepLength/lelastic))
970 return cth;
971
972 G4double x0 = 1.;
973 G4double a = 1., ea = 0., eaa = 1.;
974 G4double b=1.,b1=2.,bx=1.,eb1=3.,ebx=1.;
975 G4double prob = 1. ;
976 G4double xmean1 = 1., xmean2 = 0.;
977 G4double xmeanth = exp(-tau);
978 G4double x2meanth = (1.+2.*exp(-2.5*tau))/3.;
979
980 G4double relloss = 1.-KineticEnergy/currentKinEnergy;
981 if(relloss > rellossmax)
982 return SimpleScattering(xmeanth,x2meanth);
983
984 G4double theta0 = ComputeTheta0(trueStepLength,KineticEnergy);
985
986 // protection for very small angles
987 if(theta0*theta0 < tausmall) return cth;
988
989 if(theta0 > theta0max)
990 return SimpleScattering(xmeanth,x2meanth);
991 G4double sth = sin(0.5*theta0);
992 a = 0.25/(sth*sth);
993
994 // parameter for tail
995 G4double u = exp(log(tau)/6.);
996 G4double x = log(lambdaeff/currentRadLength);
997 G4double xsi = coeffc1+u*(coeffc2+coeffc3*u)+coeffc4*x;
998 G4double c = xsi;
999
1000 if(abs(c-3.) < 0.001) c = 3.001;
1001 if(abs(c-2.) < 0.001) c = 2.001;
1002 if(abs(c-1.) < 0.001) c = 1.001;
1003
1004 ea = exp(-xsi);
1005 eaa = 1.-ea ;
1006 xmean1 = 1.-(1.-(1.+xsi)*ea)/(a*eaa);
1007 x0 = 1.-xsi/a;
1008
1009 if(xmean1 <= 0.999*xmeanth)
1010 return SimpleScattering(xmeanth,x2meanth);
1011
1012 G4double c1 = c-1.;
1013
1014 //from continuity of derivatives
1015 b = 1.+(c-xsi)/a;
1016
1017 b1 = b+1.;
1018 bx = c/a;
1019 eb1 = exp(c1*log(b1));
1020 ebx = exp(c1*log(bx));
1021
1022 xmean2 = (x0*eb1+ebx-(eb1*bx-b1*ebx)/(c-2.))/(eb1-ebx);
1023
1024 G4double f1x0 = a*ea/eaa;
1025 G4double f2x0 = c1*eb1/(bx*(eb1-ebx));
1026 prob = f2x0/(f1x0+f2x0);
1027
1028 // sampling of costheta
1029 G4double qprob = xmeanth/(prob*xmean1+(1.-prob)*xmean2);
1030 if(G4UniformRand() < qprob)
1031 {
1032 if(G4UniformRand() < prob)
1033 cth = 1.+log(ea+G4UniformRand()*eaa)/a ;
1034 else
1035 cth = b-b1*bx/exp(log(ebx+(eb1-ebx)*G4UniformRand())/c1) ;
1036 }
1037 else
1038 cth = 2.*G4UniformRand()-1.;
1039 }
1040 }
1041 return cth ;
1042}
1043
1044//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1045
1046G4double G4UrbanMscModel96::SimpleScattering(G4double xmeanth,G4double x2meanth)
1047{
1048 // 'large angle scattering'
1049 // 2 model functions with correct xmean and x2mean
1050 G4double a = (2.*xmeanth+9.*x2meanth-3.)/(2.*xmeanth-3.*x2meanth+1.);
1051 G4double prob = (a+2.)*xmeanth/a;
1052
1053 // sampling
1054 G4double cth = 1.;
1055 if(G4UniformRand() < prob)
1056 cth = -1.+2.*exp(log(G4UniformRand())/(a+1.));
1057 else
1058 cth = -1.+2.*G4UniformRand();
1059 return cth;
1060}
1061
1062//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1063
1064G4double G4UrbanMscModel96::SampleDisplacement()
1065{
1066 G4double r = 0.0;
1067 if ((currentTau >= tausmall) && !insideskin) {
1068 G4double rmax = sqrt((tPathLength-zPathLength)*(tPathLength+zPathLength));
1069 r = rmax*exp(log(G4UniformRand())/3.);
1070 }
1071 return r;
1072}
1073
1074//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1075
1076G4double G4UrbanMscModel96::LatCorrelation()
1077{
1078 const G4double kappa = 2.5;
1079 const G4double kappami1 = kappa-1.;
1080
1081 G4double latcorr = 0.;
1082 if((currentTau >= tausmall) && !insideskin)
1083 {
1084 if(currentTau < taulim)
1085 latcorr = lambdaeff*kappa*currentTau*currentTau*
1086 (1.-(kappa+1.)*currentTau/3.)/3.;
1087 else
1088 {
1089 G4double etau = 0.;
1090 if(currentTau < taubig) etau = exp(-currentTau);
1091 latcorr = -kappa*currentTau;
1092 latcorr = exp(latcorr)/kappami1;
1093 latcorr += 1.-kappa*etau/kappami1 ;
1094 latcorr *= 2.*lambdaeff/3. ;
1095 }
1096 }
1097
1098 return latcorr;
1099}
1100
1101//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
@ JustWarning
@ fUseSafety
@ fUseDistanceToBoundary
G4long G4Poisson(G4double mean)
Definition: G4Poisson.hh:50
G4StepStatus
Definition: G4StepStatus.hh:51
@ fGeomBoundary
Definition: G4StepStatus.hh:54
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
void set(double x, double y, double z)
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
static G4LossTableManager * Instance()
const G4Material * GetMaterial() const
G4double GetTotNbOfAtomsPerVolume() const
Definition: G4Material.hh:208
G4double GetTotNbOfElectPerVolume() const
Definition: G4Material.hh:211
G4double GetRadlen() const
Definition: G4Material.hh:219
const G4String & GetName() const
Definition: G4Material.hh:177
void ProposeMomentumDirection(const G4ThreeVector &Pfinal)
const G4String & GetParticleName() const
G4StepPoint * GetPreStepPoint() const
const G4DynamicParticle * GetDynamicParticle() const
const G4MaterialCutsCouple * GetMaterialCutsCouple() const
const G4Step * GetStep() const
G4double ComputeGeomPathLength(G4double truePathLength)
G4ThreeVector & SampleScattering(const G4DynamicParticle *, G4double safety)
G4double ComputeTrueStepLength(G4double geomStepLength)
G4double ComputeTruePathLengthLimit(const G4Track &track, G4double &currentMinimalStep)
void Initialise(const G4ParticleDefinition *, const G4DataVector &)
G4double ComputeTheta0(G4double truePathLength, G4double KineticEnergy)
G4UrbanMscModel96(const G4String &nam="UrbanMsc96")
G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *particle, G4double KineticEnergy, G4double AtomicNumber, G4double AtomicWeight=0., G4double cut=0., G4double emax=DBL_MAX)
void StartTracking(G4Track *)
void SetCurrentCouple(const G4MaterialCutsCouple *)
Definition: G4VEmModel.hh:370
const G4MaterialCutsCouple * CurrentCouple() const
Definition: G4VEmModel.hh:377
G4double dtrl
Definition: G4VMscModel.hh:180
G4double GetDEDX(const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple)
Definition: G4VMscModel.hh:273
G4double facrange
Definition: G4VMscModel.hh:176
G4double ComputeGeomLimit(const G4Track &, G4double &presafety, G4double limit)
Definition: G4VMscModel.hh:256
G4bool samplez
Definition: G4VMscModel.hh:188
G4double skin
Definition: G4VMscModel.hh:179
G4double GetTransportMeanFreePath(const G4ParticleDefinition *part, G4double kinEnergy)
Definition: G4VMscModel.hh:332
G4double GetEnergy(const G4ParticleDefinition *part, G4double range, const G4MaterialCutsCouple *couple)
Definition: G4VMscModel.hh:304
G4double GetRange(const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple)
Definition: G4VMscModel.hh:288
G4double ComputeSafety(const G4ThreeVector &position, G4double limit)
Definition: G4VMscModel.hh:238
G4MscStepLimitType steppingAlgorithm
Definition: G4VMscModel.hh:186
G4ParticleChangeForMSC * GetParticleChangeForMSC(const G4ParticleDefinition *p=0)
Definition: G4VMscModel.cc:89
G4double ConvertTrueToGeom(G4double &tLength, G4double &gLength)
Definition: G4VMscModel.hh:246
G4bool latDisplasment
Definition: G4VMscModel.hh:189
G4double facsafety
Definition: G4VMscModel.hh:178
G4ThreeVector fDisplacement
Definition: G4VMscModel.hh:185
G4double facgeom
Definition: G4VMscModel.hh:177
void SetSampleZ(G4bool)
Definition: G4VMscModel.hh:231
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
std::ostringstream G4ExceptionDescription
Definition: globals.hh:76