Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4TransparentRegXTRadiator.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29
30#include <complex>
31
34#include "Randomize.hh"
35#include "G4Integrator.hh"
36#include "G4Gamma.hh"
37
38////////////////////////////////////////////////////////////////////////////
39//
40// Constructor, destructor
41
43 G4Material* foilMat,G4Material* gasMat,
44 G4double a, G4double b, G4int n,
45 const G4String& processName) :
46 G4VXTRenergyLoss(anEnvelope,foilMat,gasMat,a,b,n,processName)
47{
48 if(verboseLevel > 0)
49 G4cout<<"Regular transparent X-ray TR radiator EM process is called"<<G4endl;
50
51 // Build energy and angular integral spectra of X-ray TR photons from
52 // a radiator
53
54 fAlphaPlate = 10000;
55 fAlphaGas = 1000;
56
57 // BuildTable();
58}
59
60///////////////////////////////////////////////////////////////////////////
61
63{
64 ;
65}
66
67///////////////////////////////////////////////////////////////////////////
68//
69//
70
72{
73 G4double result, sum = 0., tmp, cof1, cof2, cofMin, cofPHC, theta2, theta2k /*, aMa, bMb ,sigma*/;
74 G4int k, kMax, kMin;
75
76 //aMa = fPlateThick*GetPlateLinearPhotoAbs(energy);
77 //bMb = fGasThick*GetGasLinearPhotoAbs(energy);
78 //sigma = aMa + bMb;
79
80 cofPHC = 4*pi*hbarc;
81 tmp = (fSigma1 - fSigma2)/cofPHC/energy;
82 cof1 = fPlateThick*tmp;
83 cof2 = fGasThick*tmp;
84
85 cofMin = energy*(fPlateThick + fGasThick)/fGamma/fGamma;
86 cofMin += (fPlateThick*fSigma1 + fGasThick*fSigma2)/energy;
87 cofMin /= cofPHC;
88
89 theta2 = cofPHC/(energy*(fPlateThick + fGasThick));
90
91 // if (fGamma < 1200) kMin = G4int(cofMin); // 1200 ?
92 // else kMin = 1;
93
94
95 kMin = G4int(cofMin);
96 if (cofMin > kMin) kMin++;
97
98 // tmp = (fPlateThick + fGasThick)*energy*fMaxThetaTR;
99 // tmp /= cofPHC;
100 // kMax = G4int(tmp);
101 // if(kMax < 0) kMax = 0;
102 // kMax += kMin;
103
104
105 kMax = kMin + 49; // 19; // kMin + G4int(tmp);
106
107 // tmp /= fGamma;
108 // if( G4int(tmp) < kMin ) kMin = G4int(tmp);
109
110 if(verboseLevel > 2)
111 {
112 G4cout<<cof1<<" "<<cof2<<" "<<cofMin<<G4endl;
113 G4cout<<"kMin = "<<kMin<<"; kMax = "<<kMax<<G4endl;
114 }
115 for( k = kMin; k <= kMax; k++ )
116 {
117 tmp = pi*fPlateThick*(k + cof2)/(fPlateThick + fGasThick);
118 result = (k - cof1)*(k - cof1)*(k + cof2)*(k + cof2);
119 // tmp = std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
120 if( k == kMin && kMin == G4int(cofMin) )
121 {
122 sum += 0.5*std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
123 }
124 else
125 {
126 sum += std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
127 }
128 theta2k = std::sqrt(theta2*std::abs(k-cofMin));
129
130 if(verboseLevel > 2)
131 {
132 // G4cout<<"k = "<<k<<"; sqrt(theta2k) = "<<theta2k<<"; tmp = "<<std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result
133 // <<"; sum = "<<sum<<G4endl;
134 G4cout<<k<<" "<<theta2k<<" "<<std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result
135 <<" "<<sum<<G4endl;
136 }
137 }
138 result = 4*( cof1 + cof2 )*( cof1 + cof2 )*sum/energy;
139 // result *= ( 1 - std::exp(-0.5*fPlateNumber*sigma) )/( 1 - std::exp(-0.5*sigma) );
140 // fPlateNumber;
141 result *= fPlateNumber; // *std::exp(-0.5*fPlateNumber*sigma);
142 // +1-std::exp(-0.5*fPlateNumber*sigma);
143 /*
144 fEnergy = energy;
145 // G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral;
146 G4Integrator<G4TransparentRegXTRadiator,G4double(G4VXTRenergyLoss::*)(G4double)> integral;
147
148 tmp = integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
149 0.0,0.3*fMaxThetaTR) +
150 integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
151 0.3*fMaxThetaTR,0.6*fMaxThetaTR) +
152 integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
153 0.6*fMaxThetaTR,fMaxThetaTR) ;
154 result += tmp;
155 */
156 return result;
157}
158
159
160///////////////////////////////////////////////////////////////////////////
161//
162// Approximation for radiator interference factor for the case of
163// fully Regular radiator. The plate and gas gap thicknesses are fixed .
164// The mean values of the plate and gas gap thicknesses
165// are supposed to be about XTR formation zones but much less than
166// mean absorption length of XTR photons in coresponding material.
167
170 G4double gamma, G4double varAngle )
171{
172 /*
173 G4double result, Za, Zb, Ma, Mb, sigma;
174
175 Za = GetPlateFormationZone(energy,gamma,varAngle);
176 Zb = GetGasFormationZone(energy,gamma,varAngle);
177 Ma = GetPlateLinearPhotoAbs(energy);
178 Mb = GetGasLinearPhotoAbs(energy);
179 sigma = Ma*fPlateThick + Mb*fGasThick;
180
181 G4complex Ca(1.0+0.5*fPlateThick*Ma/fAlphaPlate,fPlateThick/Za/fAlphaPlate);
182 G4complex Cb(1.0+0.5*fGasThick*Mb/fAlphaGas,fGasThick/Zb/fAlphaGas);
183
184 G4complex Ha = std::pow(Ca,-fAlphaPlate);
185 G4complex Hb = std::pow(Cb,-fAlphaGas);
186 G4complex H = Ha*Hb;
187 G4complex F1 = (1.0 - Ha)*(1.0 - Hb )/(1.0 - H)
188 * G4double(fPlateNumber) ;
189 G4complex F2 = (1.0-Ha)*(1.0-Ha)*Hb/(1.0-H)/(1.0-H)
190 * (1.0 - std::exp(-0.5*fPlateNumber*sigma)) ;
191 // *(1.0 - std::pow(H,fPlateNumber)) ;
192 G4complex R = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle);
193 // G4complex R = F2*OneInterfaceXTRdEdx(energy,gamma,varAngle);
194 result = 2.0*std::real(R);
195 return result;
196 */
197 // numerically unstable result
198
199 G4double result, Qa, Qb, Q, aZa, bZb, aMa, bMb, D, sigma;
200
201 aZa = fPlateThick/GetPlateFormationZone(energy,gamma,varAngle);
202 bZb = fGasThick/GetGasFormationZone(energy,gamma,varAngle);
204 bMb = fGasThick*GetGasLinearPhotoAbs(energy);
205 sigma = aMa*fPlateThick + bMb*fGasThick;
206 Qa = std::exp(-0.5*aMa);
207 Qb = std::exp(-0.5*bMb);
208 Q = Qa*Qb;
209
210 G4complex Ha( Qa*std::cos(aZa), -Qa*std::sin(aZa) );
211 G4complex Hb( Qb*std::cos(bZb), -Qb*std::sin(bZb) );
212 G4complex H = Ha*Hb;
213 G4complex Hs = conj(H);
214 D = 1.0 /( (1 - Q)*(1 - Q) +
215 4*Q*std::sin(0.5*(aZa + bZb))*std::sin(0.5*(aZa + bZb)) );
216 G4complex F1 = (1.0 - Ha)*(1.0 - Hb)*(1.0 - Hs)
218 G4complex F2 = (1.0 - Ha)*(1.0 - Ha)*Hb*(1.0 - Hs)*(1.0 - Hs)
219 // * (1.0 - std::pow(H,fPlateNumber)) * D*D;
220 * (1.0 - std::exp(-0.5*fPlateNumber*sigma)) * D*D;
221 G4complex R = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle);
222 result = 2.0*std::real(R);
223 return result;
224
225}
226
227
228//
229//
230////////////////////////////////////////////////////////////////////////////
231
232
233
234
235
236
237
238
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
std::complex< G4double > G4complex
Definition: G4Types.hh:69
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
G4TransparentRegXTRadiator(G4LogicalVolume *anEnvelope, G4Material *, G4Material *, G4double, G4double, G4int, const G4String &processName="TransparentRegXTRadiator")
G4double GetStackFactor(G4double energy, G4double gamma, G4double varAngle)
G4double SpectralXTRdEdx(G4double energy)
G4int verboseLevel
Definition: G4VProcess.hh:368
G4double GetPlateLinearPhotoAbs(G4double)
G4double GetGasFormationZone(G4double, G4double, G4double)
G4complex OneInterfaceXTRdEdx(G4double energy, G4double gamma, G4double varAngle)
G4double GetPlateFormationZone(G4double, G4double, G4double)
G4double GetGasLinearPhotoAbs(G4double)