Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4AdjointPhotoElectricModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
29#include "G4AdjointCSManager.hh"
30
32#include "G4Integrator.hh"
33#include "G4TrackStatus.hh"
34#include "G4ParticleChange.hh"
35#include "G4AdjointElectron.hh"
36#include "G4Gamma.hh"
37#include "G4AdjointGamma.hh"
38
39
40////////////////////////////////////////////////////////////////////////////////
41//
43 G4VEmAdjointModel("AdjointPEEffect")
44
45{ SetUseMatrix(false);
46 SetApplyCutInRange(false);
47
48 //Initialization
49 current_eEnergy =0.;
50 totAdjointCS=0.;
51 factorCSBiasing =1.;
52 post_step_AdjointCS =0.;
53 pre_step_AdjointCS =0.;
54 totBiasedAdjointCS =0.;
55
56 index_element=0;
57
62 theDirectPEEffectModel = new G4PEEffectModel();
63}
64////////////////////////////////////////////////////////////////////////////////
65//
67{;}
68
69////////////////////////////////////////////////////////////////////////////////
70//
72 G4bool IsScatProjToProjCase,
73 G4ParticleChange* fParticleChange)
74{ if (IsScatProjToProjCase) return ;
75
76 //Compute the totAdjointCS vectors if not already done for the current couple and electron energy
77 //-----------------------------------------------------------------------------------------------
78 const G4MaterialCutsCouple* aCouple = aTrack.GetMaterialCutsCouple();
79 const G4DynamicParticle* aDynPart = aTrack.GetDynamicParticle() ;
80 G4double electronEnergy = aDynPart->GetKineticEnergy();
81 G4ThreeVector electronDirection= aDynPart->GetMomentumDirection() ;
82 pre_step_AdjointCS = totAdjointCS; //The last computed CS was at pre step point
83 post_step_AdjointCS = AdjointCrossSection(aCouple, electronEnergy,IsScatProjToProjCase);
84 post_step_AdjointCS = totAdjointCS;
85
86
87
88
89 //Sample element
90 //-------------
91 const G4ElementVector* theElementVector = currentMaterial->GetElementVector();
92 size_t nelm = currentMaterial->GetNumberOfElements();
93 G4double rand_CS= G4UniformRand()*xsec[nelm-1];
94 for (index_element=0; index_element<nelm-1; index_element++){
95 if (rand_CS<xsec[index_element]) break;
96 }
97
98 //Sample shell and binding energy
99 //-------------
100 G4int nShells = (*theElementVector)[index_element]->GetNbOfAtomicShells();
101 rand_CS= shell_prob[index_element][nShells-1]*G4UniformRand();
102 G4int i = 0;
103 for (i=0; i<nShells-1; i++){
104 if (rand_CS<shell_prob[index_element][i]) break;
105 }
106 G4double gammaEnergy= electronEnergy+(*theElementVector)[index_element]->GetAtomicShell(i);
107
108 //Sample cos theta
109 //Copy of the G4PEEffectModel cos theta sampling method ElecCosThetaDistribution.
110 //This method cannot be used directly from G4PEEffectModel because it is a friend method. I should ask Vladimir to change that
111 //------------------------------------------------------------------------------------------------
112 //G4double cos_theta = theDirectPEEffectModel->ElecCosThetaDistribution(electronEnergy);
113
114 G4double cos_theta = 1.;
115 G4double gamma = 1. + electronEnergy/electron_mass_c2;
116 if (gamma <= 5.) {
117 G4double beta = std::sqrt(gamma*gamma-1.)/gamma;
118 G4double b = 0.5*gamma*(gamma-1.)*(gamma-2);
119
120 G4double rndm,term,greject,grejsup;
121 if (gamma < 2.) grejsup = gamma*gamma*(1.+b-beta*b);
122 else grejsup = gamma*gamma*(1.+b+beta*b);
123
124 do { rndm = 1.-2*G4UniformRand();
125 cos_theta = (rndm+beta)/(rndm*beta+1.);
126 term = 1.-beta*cos_theta;
127 greject = (1.-cos_theta*cos_theta)*(1.+b*term)/(term*term);
128 } while(greject < G4UniformRand()*grejsup);
129 }
130
131 // direction of the adjoint gamma electron
132 //---------------------------------------
133
134
135 G4double sin_theta = std::sqrt(1.-cos_theta*cos_theta);
136 G4double Phi = twopi * G4UniformRand();
137 G4double dirx = sin_theta*std::cos(Phi),diry = sin_theta*std::sin(Phi),dirz = cos_theta;
138 G4ThreeVector adjoint_gammaDirection(dirx,diry,dirz);
139 adjoint_gammaDirection.rotateUz(electronDirection);
140
141
142
143 //Weight correction
144 //-----------------------
145 CorrectPostStepWeight(fParticleChange, aTrack.GetWeight(), electronEnergy,gammaEnergy,IsScatProjToProjCase);
146
147
148
149 //Create secondary and modify fParticleChange
150 //--------------------------------------------
151 G4DynamicParticle* anAdjointGamma = new G4DynamicParticle (
152 G4AdjointGamma::AdjointGamma(),adjoint_gammaDirection, gammaEnergy);
153
154
155
156
157
158 fParticleChange->ProposeTrackStatus(fStopAndKill);
159 fParticleChange->AddSecondary(anAdjointGamma);
160
161
162
163
164}
165
166////////////////////////////////////////////////////////////////////////////////
167//
169 G4double old_weight,
170 G4double adjointPrimKinEnergy,
171 G4double projectileKinEnergy ,
172 G4bool )
173{
174 G4double new_weight=old_weight;
175
177 w_corr*=post_step_AdjointCS/pre_step_AdjointCS;
178 new_weight*=w_corr;
179 new_weight*=projectileKinEnergy/adjointPrimKinEnergy;
180 fParticleChange->SetParentWeightByProcess(false);
181 fParticleChange->SetSecondaryWeightByProcess(false);
182 fParticleChange->ProposeParentWeight(new_weight);
183}
184
185////////////////////////////////////////////////////////////////////////////////
186//
187
189 G4double electronEnergy,
190 G4bool IsScatProjToProjCase)
191{
192
193
194 if (IsScatProjToProjCase) return 0.;
195
196
197 if (aCouple !=currentCouple || current_eEnergy !=electronEnergy) {
198 totAdjointCS = 0.;
199 DefineCurrentMaterialAndElectronEnergy(aCouple, electronEnergy);
200 const G4ElementVector* theElementVector = currentMaterial->GetElementVector();
201 const double* theAtomNumDensityVector = currentMaterial->GetVecNbOfAtomsPerVolume();
202 size_t nelm = currentMaterial->GetNumberOfElements();
203 for (index_element=0;index_element<nelm;index_element++){
204
205 totAdjointCS +=AdjointCrossSectionPerAtom((*theElementVector)[index_element],electronEnergy)*theAtomNumDensityVector[index_element];
206 xsec[index_element] = totAdjointCS;
207 }
208
209 totBiasedAdjointCS=std::min(totAdjointCS,0.01);
210// totBiasedAdjointCS=totAdjointCS;
211 factorCSBiasing = totBiasedAdjointCS/totAdjointCS;
212 lastCS=totBiasedAdjointCS;
213
214
215 }
216 return totBiasedAdjointCS;
217
218
219}
220////////////////////////////////////////////////////////////////////////////////
221//
222
224 G4double electronEnergy,
225 G4bool IsScatProjToProjCase)
226{ return AdjointCrossSection(aCouple,electronEnergy,IsScatProjToProjCase);
227}
228////////////////////////////////////////////////////////////////////////////////
229//
230
232{
233 G4int nShells = anElement->GetNbOfAtomicShells();
234 G4double Z= anElement->GetZ();
235 G4int i = 0;
236 G4double B0=anElement->GetAtomicShell(0);
237 G4double gammaEnergy = electronEnergy+B0;
238 G4double CS= theDirectPEEffectModel->ComputeCrossSectionPerAtom(G4Gamma::Gamma(),gammaEnergy,Z,0.,0.,0.);
239 G4double adjointCS =0.;
240 if (CS >0) adjointCS += CS/gammaEnergy;
241 shell_prob[index_element][0] = adjointCS;
242 for (i=1;i<nShells;i++){
243 //G4cout<<i<<G4endl;
244 G4double Bi_= anElement->GetAtomicShell(i-1);
245 G4double Bi = anElement->GetAtomicShell(i);
246 //G4cout<<Bi_<<'\t'<<Bi<<G4endl;
247 if (electronEnergy <Bi_-Bi) {
248 gammaEnergy = electronEnergy+Bi;
249
250 CS=theDirectPEEffectModel->ComputeCrossSectionPerAtom(G4Gamma::Gamma(),gammaEnergy,Z,0.,0.,0.);
251 if (CS>0) adjointCS +=CS/gammaEnergy;
252 }
253 shell_prob[index_element][i] = adjointCS;
254
255 }
256 adjointCS*=electronEnergy;
257 return adjointCS;
258
259}
260////////////////////////////////////////////////////////////////////////////////
261//
262
263void G4AdjointPhotoElectricModel::DefineCurrentMaterialAndElectronEnergy(const G4MaterialCutsCouple* couple, G4double anEnergy)
264{ currentCouple = const_cast<G4MaterialCutsCouple*> (couple);
265 currentMaterial = const_cast<G4Material*> (couple->GetMaterial());
266 currentCoupleIndex = couple->GetIndex();
268 current_eEnergy = anEnergy;
269}
std::vector< G4Element * > G4ElementVector
@ fStopAndKill
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
G4double GetPostStepWeightCorrection()
static G4AdjointCSManager * GetAdjointCSManager()
static G4AdjointElectron * AdjointElectron()
static G4AdjointGamma * AdjointGamma()
virtual void SampleSecondaries(const G4Track &aTrack, G4bool IsScatProjToProjCase, G4ParticleChange *fParticleChange)
virtual void CorrectPostStepWeight(G4ParticleChange *fParticleChange, G4double old_weight, G4double adjointPrimKinEnergy, G4double projectileKinEnergy, G4bool IsScatProjToProjCase)
virtual G4double AdjointCrossSection(const G4MaterialCutsCouple *aCouple, G4double primEnergy, G4bool IsScatProjToProjCase)
G4double AdjointCrossSectionPerAtom(const G4Element *anElement, G4double electronEnergy)
virtual G4double GetAdjointCrossSection(const G4MaterialCutsCouple *aCouple, G4double primEnergy, G4bool IsScatProjToProjCase)
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
G4double GetZ() const
Definition: G4Element.hh:131
G4int GetNbOfAtomicShells() const
Definition: G4Element.hh:146
G4double GetAtomicShell(G4int index) const
Definition: G4Element.cc:367
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
const G4Material * GetMaterial() const
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:189
size_t GetNumberOfElements() const
Definition: G4Material.hh:185
const G4double * GetVecNbOfAtomsPerVolume() const
Definition: G4Material.hh:205
size_t GetIndex() const
Definition: G4Material.hh:261
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A, G4double, G4double)
void AddSecondary(G4Track *aSecondary)
G4double GetWeight() const
const G4DynamicParticle * GetDynamicParticle() const
const G4MaterialCutsCouple * GetMaterialCutsCouple() const
void SetUseMatrix(G4bool aBool)
G4ParticleDefinition * theDirectPrimaryPartDef
G4Material * currentMaterial
G4MaterialCutsCouple * currentCouple
G4ParticleDefinition * theAdjEquivOfDirectSecondPartDef
void SetApplyCutInRange(G4bool aBool)
G4ParticleDefinition * theAdjEquivOfDirectPrimPartDef
void ProposeTrackStatus(G4TrackStatus status)
void SetSecondaryWeightByProcess(G4bool)
void SetParentWeightByProcess(G4bool)
void ProposeParentWeight(G4double finalWeight)