Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
GVFlashHomoShowerTuning.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29//
30// ---------------------------------------------------------------
31// GEANT 4 class header file
32//
33// GVFlashHomoShowerTuning
34//
35// Class description:
36//
37// Tuning class for GFlash homogeneous shower parameterisation.
38// Definitions:
39// <t>: shower center of gravity
40// T: Depth at shower maximum
41// Ec: Critical energy
42// X0: Radiation length
43// y = E/Ec
44//
45// Homogeneous media:
46// Average shower profile
47// (1/E)(dE(t)/dt) = f(t)
48// = (beta*t)**(alpha-1)*beta*std::exp(-beta*t)/Gamma(alpha)
49// where Gamma is the Gamma function
50//
51// <t> = alpha/beta
52// T = (alpha-1)/beta
53// and
54// T = ln(y) + t1
55// alpha = a1+(a2+a3/Z)ln(y)
56
57// Author: J.P. Wellisch - October 2004
58//---------------------------------------------------------------
59#ifndef GVFlashHomoShowerTuning_hh
60#define GVFlashHomoShowerTuning_hh
61
63{
64 public:
67
68 public: // with description
69
70 virtual G4double ParAveT1(){ return -0.812;} // t1
71 virtual G4double ParAveA1(){ return 0.81; } // a1
72 virtual G4double ParAveA2(){ return 0.458; } // a2
73 virtual G4double ParAveA3(){ return 2.26; } // a3
74
75 virtual G4double ParSigLogT1(){ return -1.4;} // t1
76 virtual G4double ParSigLogT2(){ return 1.26;} // t2
77 // std::sqrt(var(ln(T))) = 1/(t+t2*ln(y))
78
79 virtual G4double ParSigLogA1(){ return -0.58;} // a1
80 virtual G4double ParSigLogA2(){ return 0.86; } // a2
81 // std::sqrt(var(ln(alpha))) = 1/(a1+a2*ln(y))
82
83 virtual G4double ParRho1(){ return 0.705; } // r1
84 virtual G4double ParRho2(){ return -0.023;} // r2
85 // Correlation(ln(T),ln(alpha))=r1+r2*ln(y)
86
87 // Radial profiles
88 // f(r) := (1/dE(t))(dE(t,r)/dr)
89 // Ansatz:
90 // f(r) = p(2*r*Rc**2)/(r**2+Rc**2)**2+(1-p)*(2*r*Rt**2)/(r**2+Rt**2)**2,
91 // 0<p<1
92
93 virtual G4double ParRC1(){ return 0.0251; } // c1
94 virtual G4double ParRC2(){ return 0.00319; } // c2
95 virtual G4double ParRC3(){ return 0.1162; } // c3
96 virtual G4double ParRC4(){ return -0.000381;} // c4
97 // Rc (t/T)= z1 +z2*t/T
98 // z1 = c1+c2*ln(E/GeV)
99 // z2 = c3+c4*Z
100
101 virtual G4double ParRT1(){ return 0.659; } // t1
102 virtual G4double ParRT2(){ return -0.00309;} // t2
103 virtual G4double ParRT3(){ return 0.645; } // k2
104 virtual G4double ParRT4(){ return -2.59; } // k3
105 virtual G4double ParRT5(){ return 0.3585; } // t5
106 virtual G4double ParRT6(){ return 0.0412; } // t6
107 // Rt (t/T)= k1*(std::exp(k3*(t/T-k2))+std::exp(k4*(t/T-k2)))
108 // k1 = t1+t2*Z
109 // k4 = t5+t6*ln(E/GeV)
110
111 virtual G4double ParWC1(){ return 2.632; } // c1
112 virtual G4double ParWC2(){ return -0.00094;} // c2
113 virtual G4double ParWC3(){ return 0.401; } // c3
114 virtual G4double ParWC4(){ return 0.00187; } // c4
115 virtual G4double ParWC5(){ return 1.313; } // c5
116 virtual G4double ParWC6(){ return -0.0686; } // c6
117 // p(t/T) = p1*std::exp((p2-t/T)/p3 - std::exp((p2-t/T)/p3))
118 // p1 = c1+c2*Z
119 // p2 = c3+c4*Z
120 // p3 = c5 + c6*ln(E/GeV)
121
122 virtual G4double ParSpotN1(){ return 93.; } // n1
123 virtual G4double ParSpotN2(){ return 0.876;} // n2
124 // Fluctuations on radial profiles through number of spots
125 // The total number of spots needed for a shower is
126 // Ns = n1*ln(Z)(E/GeV)**n2
127
128 // The number of spots per longitudinal interval is:
129 // (1/Ns)(dNs(t)/dt) = f(t)
130 // = (beta*t)**(alpha-1)*beta*std::exp(-beta*t)/Gamma(alpha)
131 // <t> = alpha_s/beta_s
132 // Ts = (alpha_s-1)/beta_s
133 // and
134 // Ts = T*(t1+t2*Z)
135 // alpha_s = alpha*(a1+a2*Z)
136
137 virtual G4double ParSpotT1(){ return 0.698; } // t1
138 virtual G4double ParSpotT2(){ return 0.00212;} // t2
139
140 virtual G4double ParSpotA1(){ return 0.639; } //a1
141 virtual G4double ParSpotA2(){ return 0.00334;} //a2
142
143};
144
145#endif
double G4double
Definition: G4Types.hh:64