Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4QMDMeanField.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// 081120 Add Update by T. Koi
27//
28
29#include <map>
30#include <algorithm>
31#include <numeric>
32
33#include <CLHEP/Random/Stat.h>
34
35#include "G4QMDMeanField.hh"
36#include "G4QMDParameters.hh"
37
39#include "Randomize.hh"
40
42: rclds ( 4.0 ) // distance for cluster judgement
43, epsx ( -20.0 ) // gauss term
44, epscl ( 0.0001 ) // coulomb term
45, irelcr ( 1 )
46{
47
49 wl = parameters->Get_wl();
50 cl = parameters->Get_cl();
51 rho0 = parameters->Get_rho0();
52 hbc = parameters->Get_hbc();
53 gamm = parameters->Get_gamm();
54
55 cpw = parameters->Get_cpw();
56 cph = parameters->Get_cph();
57 cpc = parameters->Get_cpc();
58
59 c0 = parameters->Get_c0();
60 c3 = parameters->Get_c3();
61 cs = parameters->Get_cs();
62
63// distance
64 c0w = 1.0/4.0/wl;
65 //c3w = 1.0/4.0/wl; //no need
66 c0sw = std::sqrt( c0w );
67 clw = 2.0 / std::sqrt ( 4.0 * pi * wl );
68
69// graduate
70 c0g = - c0 / ( 2.0 * wl );
71 c3g = - c3 / ( 4.0 * wl ) * gamm;
72 csg = - cs / ( 2.0 * wl );
73 pag = gamm - 1;
74
75}
76
77
78
80{
81 ;
82}
83
84
85
87{
88
89 //std::cout << "QMDMeanField SetSystem" << std::endl;
90
91 system = aSystem;
92
94
95 pp2.clear();
96 rr2.clear();
97 rbij.clear();
98 rha.clear();
99 rhe.clear();
100 rhc.clear();
101
102 rr2.resize( n );
103 pp2.resize( n );
104 rbij.resize( n );
105 rha.resize( n );
106 rhe.resize( n );
107 rhc.resize( n );
108
109 for ( int i = 0 ; i < n ; i++ )
110 {
111 rr2[i].resize( n );
112 pp2[i].resize( n );
113 rbij[i].resize( n );
114 rha[i].resize( n );
115 rhe[i].resize( n );
116 rhc[i].resize( n );
117 }
118
119
120 ffr.clear();
121 ffp.clear();
122 rh3d.clear();
123
124 ffr.resize( n );
125 ffp.resize( n );
126 rh3d.resize( n );
127
129
130}
131
133{
134
135 //std::cout << "QMDMeanField SetNucleus" << std::endl;
136
137 SetSystem( aNucleus );
138
139 G4double totalPotential = GetTotalPotential();
140 aNucleus->SetTotalPotential( totalPotential );
141
143
144}
145
146
147
149{
150
151 if ( system->GetTotalNumberOfParticipant() < 2 ) return;
152
153 for ( G4int j = 1 ; j < system->GetTotalNumberOfParticipant() ; j++ )
154 {
155
156 G4ThreeVector rj = system->GetParticipant( j )->GetPosition();
157 G4LorentzVector p4j = system->GetParticipant( j )->Get4Momentum();
158
159 for ( G4int i = 0 ; i < j ; i++ )
160 {
161
162 G4ThreeVector ri = system->GetParticipant( i )->GetPosition();
163 G4LorentzVector p4i = system->GetParticipant( i )->Get4Momentum();
164
165 G4ThreeVector rij = ri - rj;
166 G4ThreeVector pij = (p4i - p4j).v();
167 G4LorentzVector p4ij = p4i - p4j;
168 G4ThreeVector bij = ( p4i + p4j ).boostVector();
169 G4double gammaij = ( p4i + p4j ).gamma();
170
171 G4double eij = ( p4i + p4j ).e();
172
173 G4double rbrb = rij*bij;
174// G4double bij2 = bij*bij;
175 G4double rij2 = rij*rij;
176 G4double pij2 = pij*pij;
177
178 rbrb = irelcr * rbrb;
179 G4double gamma2_ij = gammaij*gammaij;
180
181
182 rr2[i][j] = rij2 + gamma2_ij * rbrb*rbrb;
183 rr2[j][i] = rr2[i][j];
184
185 rbij[i][j] = gamma2_ij * rbrb;
186 rbij[j][i] = - rbij[i][j];
187
188 pp2[i][j] = pij2
189 + irelcr * ( - std::pow ( p4i.e() - p4j.e() , 2 )
190 + gamma2_ij * std::pow ( ( ( p4i.m2() - p4j.m2() ) / eij ) , 2 ) );
191
192
193 pp2[j][i] = pp2[i][j];
194
195// Gauss term
196
197 G4double expa1 = - rr2[i][j] * c0w;
198
199 G4double rh1;
200 if ( expa1 > epsx )
201 {
202 rh1 = std::exp( expa1 );
203 }
204 else
205 {
206 rh1 = 0.0;
207 }
208
209 G4int ibry = system->GetParticipant(i)->GetBaryonNumber();
210 G4int jbry = system->GetParticipant(j)->GetBaryonNumber();
211
212
213 rha[i][j] = ibry*jbry*rh1;
214 rha[j][i] = rha[i][j];
215
216// Coulomb terms
217
218 G4double rrs2 = rr2[i][j] + epscl;
219 G4double rrs = std::sqrt ( rrs2 );
220
221 G4int icharge = system->GetParticipant(i)->GetChargeInUnitOfEplus();
222 G4int jcharge = system->GetParticipant(j)->GetChargeInUnitOfEplus();
223
224 G4double erf = 0.0;
225 // T. K. add this protection. 5.8 is good enough for double
226 if ( rrs*c0sw < 5.8 )
227 erf = CLHEP::HepStat::erf ( rrs*c0sw );
228 else
229 erf = 1.0;
230
231 G4double erfij = erf/rrs;
232
233
234 rhe[i][j] = icharge*jcharge * erfij;
235
236 rhe[j][i] = rhe[i][j];
237
238 rhc[i][j] = icharge*jcharge * ( - erfij + clw * rh1 ) / rrs2;
239
240 rhc[j][i] = rhc[i][j];
241
242 } // i
243 } // j
244}
245
246
247
249{
250
251 //std::cout << "Cal2BodyQuantities " << i << std::endl;
252
253 G4ThreeVector ri = system->GetParticipant( i )->GetPosition();
254 G4LorentzVector p4i = system->GetParticipant( i )->Get4Momentum();
255
256
257 for ( G4int j = 0 ; j < system->GetTotalNumberOfParticipant() ; j ++ )
258 {
259 if ( j == i ) continue;
260
261 G4ThreeVector rj = system->GetParticipant( j )->GetPosition();
262 G4LorentzVector p4j = system->GetParticipant( j )->Get4Momentum();
263
264 G4ThreeVector rij = ri - rj;
265 G4ThreeVector pij = (p4i - p4j).v();
266 G4LorentzVector p4ij = p4i - p4j;
267 G4ThreeVector bij = ( p4i + p4j ).boostVector();
268 G4double gammaij = ( p4i + p4j ).gamma();
269
270 G4double eij = ( p4i + p4j ).e();
271
272 G4double rbrb = rij*bij;
273// G4double bij2 = bij*bij;
274 G4double rij2 = rij*rij;
275 G4double pij2 = pij*pij;
276
277 rbrb = irelcr * rbrb;
278 G4double gamma2_ij = gammaij*gammaij;
279
280/*
281 G4double rbrb = 0.0;
282 G4double beta2_ij = 0.0;
283 G4double rij2 = 0.0;
284 G4double pij2 = 0.0;
285
286//
287 G4LorentzVector p4ip4j = p4i + p4j;
288 G4double eij = p4ip4j.e();
289
290 G4ThreeVector r = ri - rj;
291 G4LorentzVector p4 = p4i - p4j;
292
293 rbrb = r.x()*p4ip4j.x()/eij
294 + r.y()*p4ip4j.y()/eij
295 + r.z()*p4ip4j.z()/eij;
296
297 beta2_ij = ( p4ip4j.x()*p4ip4j.x() + p4ip4j.y()*p4ip4j.y() + p4ip4j.z()*p4ip4j.z() ) / ( eij*eij );
298 rij2 = r*r;
299 pij2 = p4.v()*p4.v();
300
301 rbrb = irelcr * rbrb;
302
303 G4double gamma2_ij = 1 / ( 1 - beta2_ij );
304*/
305
306 rr2[i][j] = rij2 + gamma2_ij * rbrb*rbrb;
307 rr2[j][i] = rr2[i][j];
308
309 rbij[i][j] = gamma2_ij * rbrb;
310 rbij[j][i] = - rbij[i][j];
311
312 pp2[i][j] = pij2
313 + irelcr * ( - std::pow ( p4i.e() - p4j.e() , 2 )
314 + gamma2_ij * std::pow ( ( ( p4i.m2() - p4j.m2() ) / eij ) , 2 ) );
315
316 pp2[j][i] = pp2[i][j];
317
318// Gauss term
319
320 G4double expa1 = - rr2[i][j] * c0w;
321
322 G4double rh1;
323 if ( expa1 > epsx )
324 {
325 rh1 = std::exp( expa1 );
326 }
327 else
328 {
329 rh1 = 0.0;
330 }
331
332 G4int ibry = system->GetParticipant(i)->GetBaryonNumber();
333 G4int jbry = system->GetParticipant(j)->GetBaryonNumber();
334
335
336 rha[i][j] = ibry*jbry*rh1;
337 rha[j][i] = rha[i][j];
338
339// Coulomb terms
340
341 G4double rrs2 = rr2[i][j] + epscl;
342 G4double rrs = std::sqrt ( rrs2 );
343
344 G4int icharge = system->GetParticipant(i)->GetChargeInUnitOfEplus();
345 G4int jcharge = system->GetParticipant(j)->GetChargeInUnitOfEplus();
346
347 G4double erf = 0.0;
348 // T. K. add this protection. 5.8 is good enough for double
349 if ( rrs*c0sw < 5.8 )
350 erf = CLHEP::HepStat::erf ( rrs*c0sw );
351 else
352 erf = 1.0;
353
354 G4double erfij = erf/rrs;
355
356
357 rhe[i][j] = icharge*jcharge * erfij;
358
359 rhe[j][i] = rhe[i][j];
360
361// G4double clw;
362
363 rhc[i][j] = icharge*jcharge * ( - erfij + clw * rh1 ) / rrs2;
364
365 rhc[j][i] = rhc[i][j];
366
367 }
368
369}
370
371
372
374{
375
376 ffr.resize( system->GetTotalNumberOfParticipant() );
377 ffp.resize( system->GetTotalNumberOfParticipant() );
378 rh3d.resize( system->GetTotalNumberOfParticipant() );
379
380 for ( G4int i = 0 ; i < system->GetTotalNumberOfParticipant() ; i ++ )
381 {
382 G4double rho3 = 0.0;
383 for ( G4int j = 0 ; j < system->GetTotalNumberOfParticipant() ; j ++ )
384 {
385 rho3 += rha[j][i];
386 }
387 rh3d[i] = std::pow ( rho3 , pag );
388 }
389
390
391 for ( G4int i = 0 ; i < system->GetTotalNumberOfParticipant() ; i ++ )
392 {
393
394 G4ThreeVector ri = system->GetParticipant( i )->GetPosition();
395 G4LorentzVector p4i = system->GetParticipant( i )->Get4Momentum();
396
397 G4ThreeVector betai = p4i.v()/p4i.e();
398
399// R-JQMD
400 G4double Vi = GetPotential( i );
401 G4double p_zero = std::sqrt( p4i.e()*p4i.e() + 2*p4i.m()*Vi);
402 G4ThreeVector betai_R = p4i.v()/p_zero;
403 G4double mi_R = p4i.m()/p_zero;
404//
405 ffr[i] = betai_R;
406 ffp[i] = G4ThreeVector( 0.0 );
407
408 if ( false )
409 {
410 ffr[i] = betai;
411 mi_R = 1.0;
412 }
413
414 for ( G4int j = 0 ; j < system->GetTotalNumberOfParticipant() ; j ++ )
415 {
416
417 G4ThreeVector rj = system->GetParticipant( j )->GetPosition();
418 G4LorentzVector p4j = system->GetParticipant( j )->Get4Momentum();
419
420 G4double eij = p4i.e() + p4j.e();
421
422 G4int icharge = system->GetParticipant(i)->GetChargeInUnitOfEplus();
423 G4int jcharge = system->GetParticipant(j)->GetChargeInUnitOfEplus();
424
425 G4int inuc = system->GetParticipant(i)->GetNuc();
426 G4int jnuc = system->GetParticipant(j)->GetNuc();
427
428 G4double ccpp = c0g * rha[j][i]
429 + c3g * rha[j][i] * ( rh3d[j] + rh3d[i] )
430 + csg * rha[j][i] * jnuc * inuc
431 * ( 1. - 2. * std::abs( jcharge - icharge ) )
432 + cl * rhc[j][i];
433 ccpp *= mi_R;
434
435/*
436 std::cout << c0g << " " << c3g << " " << csg << " " << cl << std::endl;
437 std::cout << "ccpp " << i << " " << j << " " << ccpp << std::endl;
438 std::cout << "rha[j][i] " << rha[j][i] << std::endl;
439 std::cout << "rh3d " << rh3d[j] << " " << rh3d[i] << std::endl;
440 std::cout << "rhc[j][i] " << rhc[j][i] << std::endl;
441*/
442
443 G4double grbb = - rbij[j][i];
444 G4double ccrr = grbb * ccpp / eij;
445
446/*
447 std::cout << "ccrr " << ccrr << std::endl;
448 std::cout << "grbb " << grbb << std::endl;
449*/
450
451
452 G4ThreeVector rij = ri - rj;
453 G4ThreeVector betaij = ( p4i + p4j ).v()/eij;
454
455 G4ThreeVector cij = betaij - betai;
456
457 ffr[i] = ffr[i] + 2*ccrr* ( rij + grbb*cij );
458
459 ffp[i] = ffp[i] - 2*ccpp* ( rij + grbb*betaij );
460
461 }
462 }
463
464 //std::cout << "gradu 0 " << ffr[0] << " " << ffp[0] << std::endl;
465 //std::cout << "gradu 1 " << ffr[1] << " " << ffp[1] << std::endl;
466
467}
468
469
470
472{
474
475 G4double rhoa = 0.0;
476 G4double rho3 = 0.0;
477 G4double rhos = 0.0;
478 G4double rhoc = 0.0;
479
480
481 G4int icharge = system->GetParticipant(i)->GetChargeInUnitOfEplus();
482 G4int inuc = system->GetParticipant(i)->GetNuc();
483
484 for ( G4int j = 0 ; j < n ; j ++ )
485 {
486 G4int jcharge = system->GetParticipant(j)->GetChargeInUnitOfEplus();
487 G4int jnuc = system->GetParticipant(j)->GetNuc();
488
489 rhoa += rha[j][i];
490 rhoc += rhe[j][i];
491 rhos += rha[j][i] * jnuc * inuc
492 * ( 1 - 2 * std::abs ( jcharge - icharge ) );
493 }
494
495 rho3 = std::pow ( rhoa , gamm );
496
497 G4double potential = c0 * rhoa
498 + c3 * rho3
499 + cs * rhos
500 + cl * rhoc;
501
502 return potential;
503}
504
505
506
508{
509
511
512 std::vector < G4double > rhoa ( n , 0.0 );
513 std::vector < G4double > rho3 ( n , 0.0 );
514 std::vector < G4double > rhos ( n , 0.0 );
515 std::vector < G4double > rhoc ( n , 0.0 );
516
517
518 for ( G4int i = 0 ; i < n ; i ++ )
519 {
520 G4int icharge = system->GetParticipant(i)->GetChargeInUnitOfEplus();
521 G4int inuc = system->GetParticipant(i)->GetNuc();
522
523 for ( G4int j = 0 ; j < n ; j ++ )
524 {
525 G4int jcharge = system->GetParticipant(j)->GetChargeInUnitOfEplus();
526 G4int jnuc = system->GetParticipant(j)->GetNuc();
527
528 rhoa[i] += rha[j][i];
529 rhoc[i] += rhe[j][i];
530 rhos[i] += rha[j][i] * jnuc * inuc
531 * ( 1 - 2 * std::abs ( jcharge - icharge ) );
532 }
533
534 rho3[i] = std::pow ( rhoa[i] , gamm );
535 }
536
537 G4double potential = c0 * std::accumulate( rhoa.begin() , rhoa.end() , 0.0 )
538 + c3 * std::accumulate( rho3.begin() , rho3.end() , 0.0 )
539 + cs * std::accumulate( rhos.begin() , rhos.end() , 0.0 )
540 + cl * std::accumulate( rhoc.begin() , rhoc.end() , 0.0 );
541
542 return potential;
543
544}
545
546
547
548G4double G4QMDMeanField::calPauliBlockingFactor( G4int i )
549{
550
551 G4double pf = 0.0;
552// i is supposed beyond total number of Participant()
553 G4int icharge = system->GetParticipant(i)->GetChargeInUnitOfEplus();
554
555 for ( G4int j = 0 ; j < system->GetTotalNumberOfParticipant() ; j++ )
556 {
557
558 G4int jcharge = system->GetParticipant(j)->GetChargeInUnitOfEplus();
559 G4int jnuc = system->GetParticipant(j)->GetNuc();
560
561 if ( jcharge == icharge && jnuc == 1 )
562 {
563
564/*
565 std::cout << "Pauli i j " << i << " " << j << std::endl;
566 std::cout << "Pauli icharge " << icharge << std::endl;
567 std::cout << "Pauli jcharge " << jcharge << std::endl;
568*/
569 G4double expa = -rr2[i][j]*cpw;
570
571
572 if ( expa > epsx )
573 {
574 expa = expa - pp2[i][j]*cph;
575/*
576 std::cout << "Pauli cph " << cph << std::endl;
577 std::cout << "Pauli pp2 " << pp2[i][j] << std::endl;
578 std::cout << "Pauli expa " << expa << std::endl;
579 std::cout << "Pauli epsx " << epsx << std::endl;
580*/
581 if ( expa > epsx )
582 {
583// std::cout << "Pauli phase " << pf << std::endl;
584 pf = pf + std::exp ( expa );
585 }
586 }
587 }
588
589 }
590
591
592 pf = ( pf - 1.0 ) * cpc;
593
594 //std::cout << "Pauli pf " << pf << std::endl;
595
596 return pf;
597
598}
599
600
601
603{
604 G4bool result = false;
605
606 if ( system->GetParticipant( i )->GetNuc() == 1 )
607 {
608 G4double pf = calPauliBlockingFactor( i );
609 G4double rand = G4UniformRand();
610 if ( pf > rand ) result = true;
611 }
612
613 return result;
614}
615
616
617
619{
620
621 G4double cc2 = 1.0;
622 G4double cc1 = 1.0 - cc2;
623 G4double cc3 = 1.0 / 2.0 / cc2;
624
625 G4double dt3 = dt * cc3;
626 G4double dt1 = dt * ( cc1 - cc3 );
627 G4double dt2 = dt * cc2;
628
629 CalGraduate();
630
632
633// 1st Step
634
635 std::vector< G4ThreeVector > f0r, f0p;
636 f0r.resize( n );
637 f0p.resize( n );
638
639 for ( G4int i = 0 ; i < n ; i++ )
640 {
641 G4ThreeVector ri = system->GetParticipant( i )->GetPosition();
642 G4ThreeVector p3i = system->GetParticipant( i )->GetMomentum();
643
644 ri += dt3* ffr[i];
645 p3i += dt3* ffp[i];
646
647 f0r[i] = ffr[i];
648 f0p[i] = ffp[i];
649
650 system->GetParticipant( i )->SetPosition( ri );
651 system->GetParticipant( i )->SetMomentum( p3i );
652
653// we do not need set total momentum by ourselvs
654 }
655
656// 2nd Step
658 CalGraduate();
659
660 for ( G4int i = 0 ; i < n ; i++ )
661 {
662 G4ThreeVector ri = system->GetParticipant( i )->GetPosition();
663 G4ThreeVector p3i = system->GetParticipant( i )->GetMomentum();
664
665 ri += dt1* f0r[i] + dt2* ffr[i];
666 p3i += dt1* f0p[i] + dt2* ffp[i];
667
668 system->GetParticipant( i )->SetPosition( ri );
669 system->GetParticipant( i )->SetMomentum( p3i );
670
671// we do not need set total momentum by ourselvs
672 }
673
675
676}
677
678
679
680std::vector< G4QMDNucleus* > G4QMDMeanField::DoClusterJudgment()
681{
682
683 //std::cout << "MeanField DoClusterJudgemnt" << std::endl;
684
686
687 G4double cpf2 = std::pow ( 1.5 * pi*pi * std::pow ( 4.0 * pi * wl , -1.5 )
688 ,
689 2./3. )
690 * hbc * hbc;
691 G4double rcc2 = rclds*rclds;
692
694 std::vector < G4double > rhoa;
695 rhoa.resize ( n );
696
697 for ( G4int i = 0 ; i < n ; i++ )
698 {
699 rhoa[i] = 0.0;
700
701 if ( system->GetParticipant( i )->GetBaryonNumber() == 1 )
702 {
703 for ( G4int j = 0 ; j < n ; j++ )
704 {
705 if ( system->GetParticipant( j )->GetBaryonNumber() == 1 )
706 rhoa[i] += rha[i][j];
707 }
708 }
709
710 rhoa[i] = std::pow ( rhoa[i] + 1 , 1.0/3.0 );
711
712 }
713
714// identification of the cluster
715
716 std::map < G4int , std::vector < G4int > > cluster_map;
717 std::vector < G4bool > is_already_belong_some_cluster;
718
719 // cluster_id participant_id
720 std::multimap < G4int , G4int > comb_map;
721 std::multimap < G4int , G4int > assign_map;
722 assign_map.clear();
723
724 std::vector < G4int > mascl;
725 std::vector < G4int > num;
726 mascl.resize ( n );
727 num.resize ( n );
728 is_already_belong_some_cluster.resize ( n );
729
730 std::vector < G4int > is_assigned_to ( n , -1 );
731 std::multimap < G4int , G4int > clusters;
732
733 for ( G4int i = 0 ; i < n ; i++ )
734 {
735 mascl[i] = 1;
736 num[i] = 1;
737
738 is_already_belong_some_cluster[i] = false;
739 }
740
741
742 G4int nclst = 1;
743 G4int ichek = 1;
744
745
746 G4int id = 0;
747 G4int cluster_id = -1;
748 for ( G4int i = 0 ; i < n-1 ; i++ )
749 {
750
751 G4bool hasThisCompany = false;
752// Check only for bryons?
753// std::cout << "Check Baryon " << i << std::endl;
754
755 if ( system->GetParticipant( i )->GetBaryonNumber() == 1 )
756 {
757
758// if ( is_already_belong_some_cluster[i] != true )
759// {
760 //G4int j1 = ichek + 1;
761 G4int j1 = i + 1;
762 for ( G4int j = j1 ; j < n ; j++ )
763 {
764
765 std::vector < G4int > cluster_participants;
766 if ( system->GetParticipant( j )->GetBaryonNumber() == 1 )
767 {
768 G4double rdist2 = rr2[ i ][ j ];
769 G4double pdist2 = pp2[ i ][ j ];
770 //G4double rdist2 = rr2[ num[i] ][ num[j] ];
771 //G4double pdist2 = pp2[ num[i] ][ num[j] ];
772 G4double pcc2 = cpf2
773 * ( rhoa[ i ] + rhoa[ j ] )
774 * ( rhoa[ i ] + rhoa[ j ] );
775
776// Check phase space: close enough?
777 if ( rdist2 < rcc2 && pdist2 < pcc2 )
778 {
779
780/*
781 std::cout << "G4QMDRESULT "
782 << i << " " << j << " " << id << " "
783 << is_assigned_to [ i ] << " " << is_assigned_to [ j ]
784 << std::endl;
785*/
786
787 if ( is_assigned_to [ j ] == -1 )
788 {
789 if ( is_assigned_to [ i ] == -1 )
790 {
791 if ( clusters.size() != 0 )
792 {
793 id = clusters.rbegin()->first + 1;
794 //std::cout << "id is increare " << id << std::endl;
795 }
796 else
797 {
798 id = 0;
799 }
800 clusters.insert ( std::multimap<G4int,G4int>::value_type ( id , i ) );
801 is_assigned_to [ i ] = id;
802 clusters.insert ( std::multimap<G4int,G4int>::value_type ( id , j ) );
803 is_assigned_to [ j ] = id;
804 }
805 else
806 {
807 clusters.insert ( std::multimap<G4int,G4int>::value_type ( is_assigned_to [ i ] , j ) );
808 is_assigned_to [ j ] = is_assigned_to [ i ];
809 }
810 }
811 else
812 {
813// j is already belong to some cluester
814 if ( is_assigned_to [ i ] == -1 )
815 {
816 clusters.insert ( std::multimap<G4int,G4int>::value_type ( is_assigned_to [ j ] , i ) );
817 is_assigned_to [ i ] = is_assigned_to [ j ];
818 }
819 else
820 {
821// i has companion
822 if ( is_assigned_to [ i ] != is_assigned_to [ j ] )
823 {
824// move companions to the cluster
825//
826 //std::cout << "combine " << is_assigned_to [ i ] << " to " << is_assigned_to [ j ] << std::endl;
827 std::multimap< G4int , G4int > clusters_tmp;
828 G4int target_cluster_id;
829 if ( is_assigned_to [ i ] > is_assigned_to [ j ] )
830 target_cluster_id = is_assigned_to [ i ];
831 else
832 target_cluster_id = is_assigned_to [ j ];
833
834 for ( std::multimap< G4int , G4int >::iterator it
835 = clusters.begin() ; it != clusters.end() ; it++ )
836 {
837
838 //std::cout << it->first << " " << it->second << " " << target_cluster_id << std::endl;
839 if ( it->first == target_cluster_id )
840 {
841 //std::cout << "move " << it->first << " " << it->second << std::endl;
842 is_assigned_to [ it->second ] = is_assigned_to [ j ];
843 clusters_tmp.insert ( std::multimap<G4int,G4int>::value_type ( is_assigned_to [ j ] , it->second ) );
844 }
845 else
846 {
847 clusters_tmp.insert ( std::multimap<G4int,G4int>::value_type ( it->first , it->second ) );
848 }
849 }
850
851 clusters = clusters_tmp;
852 //id = clusters.rbegin()->first;
853 //id = target_cluster_id;
854 //std::cout << "id " << id << std::endl;
855 }
856 }
857 }
858
859 //std::cout << "combination " << i << " " << j << std::endl;
860 comb_map.insert( std::multimap<G4int,G4int>::value_type ( i , j ) );
861 cluster_participants.push_back ( j );
862
863
864
865 if ( assign_map.find( cluster_id ) == assign_map.end() )
866 {
867 is_already_belong_some_cluster[i] = true;
868 assign_map.insert ( std::multimap<G4int,G4int>::value_type ( cluster_id , i ) );
869 hasThisCompany = true;
870 }
871 assign_map.insert ( std::multimap<G4int,G4int>::value_type ( cluster_id , j ) );
872 is_already_belong_some_cluster[j] = true;
873
874 }
875
876 if ( ichek == i )
877 {
878 nclst++;
879 ichek++;
880 }
881 }
882
883 if ( cluster_participants.size() > 0 )
884 {
885// cluster , participant
886 cluster_map.insert ( std::pair < G4int , std::vector < G4int > > ( i , cluster_participants ) );
887 }
888 }
889// }
890 }
891 if ( hasThisCompany == true ) cluster_id++;
892 }
893
894 //std::cout << " id " << id << std::endl;
895
896// sort
897// Heavy cluster comes first
898// size cluster_id
899 std::multimap< G4int , G4int > sorted_cluster_map;
900 for ( G4int i = 0 ; i <= id ; i++ ) // << "<=" because id is highest cluster nubmer.
901 {
902
903 //std::cout << i << " cluster has " << clusters.count( i ) << " nucleons." << std::endl;
904 sorted_cluster_map.insert ( std::multimap<G4int,G4int>::value_type ( (G4int) clusters.count( i ) , i ) );
905
906 }
907
908
909// create nucleus from devided clusters
910 std::vector < G4QMDNucleus* > result;
911 for ( std::multimap < G4int , G4int >::reverse_iterator it
912 = sorted_cluster_map.rbegin() ; it != sorted_cluster_map.rend() ; it ++)
913 {
914
915 //G4cout << "Add Participants to cluseter " << it->second << G4endl;
916
917 if ( it->first != 0 )
918 {
919 G4QMDNucleus* nucleus = new G4QMDNucleus();
920 for ( std::multimap < G4int , G4int >::iterator itt
921 = clusters.begin() ; itt != clusters.end() ; itt ++)
922 {
923
924 if ( it->second == itt->first )
925 {
926 nucleus->SetParticipant( system->GetParticipant ( itt->second ) );
927 //G4cout << "Add Participants " << itt->second << " " << system->GetParticipant ( itt->second )->GetPosition() << G4endl;
928 }
929
930 }
931 result.push_back( nucleus );
932 }
933
934 }
935
936// delete participants from current system
937
938 for ( std::vector < G4QMDNucleus* > ::iterator it
939 = result.begin() ; it != result.end() ; it++ )
940 {
941 system->SubtractSystem ( *it );
942 }
943
944 return result;
945
946}
947
948
949
951{
952 SetSystem( system );
953}
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector v() const
static double erf(double x)
G4double GetTotalPotential()
void SetNucleus(G4QMDNucleus *aSystem)
void DoPropagation(G4double)
void Cal2BodyQuantities()
G4double GetPotential(G4int)
std::vector< G4QMDNucleus * > DoClusterJudgment()
void SetSystem(G4QMDSystem *aSystem)
G4bool IsPauliBlocked(G4int)
void SetTotalPotential(G4double x)
Definition: G4QMDNucleus.hh:62
void CalEnergyAndAngularMomentumInCM()
G4double Get_cpc()
static G4QMDParameters * GetInstance()
G4double Get_hbc()
G4double Get_rho0()
G4double Get_gamm()
G4double Get_cpw()
G4double Get_cph()
G4ThreeVector GetPosition()
void SetPosition(G4ThreeVector r)
G4LorentzVector Get4Momentum()
G4int GetChargeInUnitOfEplus()
G4ThreeVector GetMomentum()
void SetMomentum(G4ThreeVector p)
G4QMDParticipant * GetParticipant(G4int i)
Definition: G4QMDSystem.hh:62
void SubtractSystem(G4QMDSystem *)
Definition: G4QMDSystem.cc:59
G4int GetTotalNumberOfParticipant()
Definition: G4QMDSystem.hh:60
void SetParticipant(G4QMDParticipant *particle)
Definition: G4QMDSystem.hh:51