Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LENeutronInelastic Class Reference

#include <G4LENeutronInelastic.hh>

+ Inheritance diagram for G4LENeutronInelastic:

Public Member Functions

 G4LENeutronInelastic ()
 
 ~G4LENeutronInelastic ()
 
G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
virtual void ModelDescription (std::ostream &outFile) const
 
- Public Member Functions inherited from G4InelasticInteraction
 G4InelasticInteraction (const G4String &name="LEInelastic")
 
virtual ~G4InelasticInteraction ()
 
void RegisterIsotopeProductionModel (G4VIsotopeProduction *aModel)
 
void TurnOnIsotopeProduction ()
 
virtual const std::pair< G4double, G4doubleGetFatalEnergyCheckLevels () const
 
- Public Member Functions inherited from G4HadronicInteraction
 G4HadronicInteraction (const G4String &modelName="HadronicModel")
 
virtual ~G4HadronicInteraction ()
 
virtual G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)=0
 
virtual G4double SampleInvariantT (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
virtual G4bool IsApplicable (const G4HadProjectile &, G4Nucleus &)
 
G4double GetMinEnergy () const
 
G4double GetMinEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMinEnergy (G4double anEnergy)
 
void SetMinEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMinEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4double GetMaxEnergy () const
 
G4double GetMaxEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMaxEnergy (const G4double anEnergy)
 
void SetMaxEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMaxEnergy (G4double anEnergy, const G4Material *aMaterial)
 
const G4HadronicInteractionGetMyPointer () const
 
G4int GetVerboseLevel () const
 
void SetVerboseLevel (G4int value)
 
const G4StringGetModelName () const
 
void DeActivateFor (const G4Material *aMaterial)
 
void ActivateFor (const G4Material *aMaterial)
 
void DeActivateFor (const G4Element *anElement)
 
void ActivateFor (const G4Element *anElement)
 
G4bool IsBlocked (const G4Material *aMaterial) const
 
G4bool IsBlocked (const G4Element *anElement) const
 
void SetRecoilEnergyThreshold (G4double val)
 
G4double GetRecoilEnergyThreshold () const
 
G4bool operator== (const G4HadronicInteraction &right) const
 
G4bool operator!= (const G4HadronicInteraction &right) const
 
virtual const std::pair< G4double, G4doubleGetFatalEnergyCheckLevels () const
 
virtual std::pair< G4double, G4doubleGetEnergyMomentumCheckLevels () const
 
void SetEnergyMomentumCheckLevels (G4double relativeLevel, G4double absoluteLevel)
 
virtual void ModelDescription (std::ostream &outFile) const
 

Additional Inherited Members

- Static Public Member Functions inherited from G4InelasticInteraction
static G4IsoParticleChangeGetIsotopeProductionInfo ()
 
- Protected Member Functions inherited from G4InelasticInteraction
G4double Pmltpc (G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
 
G4bool MarkLeadingStrangeParticle (const G4ReactionProduct &currentParticle, const G4ReactionProduct &targetParticle, G4ReactionProduct &leadParticle)
 
void SetUpPions (const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen)
 
void Rotate (G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen)
 
void GetNormalizationConstant (const G4double availableEnergy, G4double &n, G4double &anpn)
 
void CalculateMomenta (G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
 
void SetUpChange (G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
 
void DoIsotopeCounting (const G4HadProjectile *theProjectile, const G4Nucleus &aNucleus)
 
G4IsoResultExtractResidualNucleus (const G4Nucleus &aNucleus)
 
- Protected Member Functions inherited from G4HadronicInteraction
void SetModelName (const G4String &nam)
 
G4bool IsBlocked () const
 
void Block ()
 
- Protected Attributes inherited from G4InelasticInteraction
G4bool isotopeProduction
 
G4ReactionDynamics theReactionDynamics
 
- Protected Attributes inherited from G4HadronicInteraction
G4HadFinalState theParticleChange
 
G4int verboseLevel
 
G4double theMinEnergy
 
G4double theMaxEnergy
 
G4bool isBlocked
 

Detailed Description

Definition at line 44 of file G4LENeutronInelastic.hh.

Constructor & Destructor Documentation

◆ G4LENeutronInelastic()

G4LENeutronInelastic::G4LENeutronInelastic ( )
inline

Definition at line 48 of file G4LENeutronInelastic.hh.

48 : G4InelasticInteraction("G4LENeutronInelastic")
49 {
50 SetMinEnergy(0.0);
51 SetMaxEnergy(55.*CLHEP::GeV);
52 G4cout << "WARNING: model G4LENeutronInelastic is being deprecated and will\n"
53 << "disappear in Geant4 version 10.0" << G4endl;
54 }
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
void SetMinEnergy(G4double anEnergy)
void SetMaxEnergy(const G4double anEnergy)

◆ ~G4LENeutronInelastic()

G4LENeutronInelastic::~G4LENeutronInelastic ( )
inline

Definition at line 56 of file G4LENeutronInelastic.hh.

56{}

Member Function Documentation

◆ ApplyYourself()

G4HadFinalState * G4LENeutronInelastic::ApplyYourself ( const G4HadProjectile aTrack,
G4Nucleus targetNucleus 
)
virtual

Implements G4HadronicInteraction.

Definition at line 52 of file G4LENeutronInelastic.cc.

54{
56 const G4HadProjectile *originalIncident = &aTrack;
57
58 // Create the target particle
59 G4DynamicParticle* originalTarget = targetNucleus.ReturnTargetParticle();
60
61 if (verboseLevel > 1) {
62 const G4Material* targetMaterial = aTrack.GetMaterial();
63 G4cout << "G4LENeutronInelastic::ApplyYourself called" << G4endl;
64 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
65 G4cout << "target material = " << targetMaterial->GetName() << ", ";
66 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
67 << G4endl;
68 }
69
70 G4ReactionProduct modifiedOriginal;
71 modifiedOriginal = *originalIncident;
72 G4ReactionProduct targetParticle;
73 targetParticle = *originalTarget;
74 if (originalIncident->GetKineticEnergy()/GeV < 0.01 + 2.*G4UniformRand()/9.) {
75 SlowNeutron(originalIncident, modifiedOriginal, targetParticle, targetNucleus);
76 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
77 delete originalTarget;
78 return &theParticleChange;
79 }
80
81 // Fermi motion and evaporation
82 // As of Geant3, the Fermi energy calculation had not been done
83 G4double ek = originalIncident->GetKineticEnergy()/MeV;
84 G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
85
86 G4double tkin = targetNucleus.Cinema(ek);
87 ek += tkin;
88 modifiedOriginal.SetKineticEnergy( ek*MeV );
89 G4double et = ek + amas;
90 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
91 G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
92 if (pp > 0.0) {
93 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
94 modifiedOriginal.SetMomentum(momentum * (p/pp) );
95 }
96
97 // calculate black track energies
98 tkin = targetNucleus.EvaporationEffects( ek );
99 ek -= tkin;
100 modifiedOriginal.SetKineticEnergy( ek*MeV );
101 et = ek + amas;
102 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
103 pp = modifiedOriginal.GetMomentum().mag()/MeV;
104 if (pp > 0.0) {
105 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
106 modifiedOriginal.SetMomentum(momentum * (p/pp) );
107 }
108 const G4double cutOff = 0.1;
109 if (modifiedOriginal.GetKineticEnergy()/MeV <= cutOff) {
110 SlowNeutron(originalIncident, modifiedOriginal, targetParticle, targetNucleus);
111 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
112 delete originalTarget;
113 return &theParticleChange;
114 }
115
116 G4ReactionProduct currentParticle = modifiedOriginal;
117 currentParticle.SetSide(1); // incident always goes in forward hemisphere
118 targetParticle.SetSide(-1); // target always goes in backward hemisphere
119 G4bool incidentHasChanged = false;
120 G4bool targetHasChanged = false;
121 G4bool quasiElastic = false;
122 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
123 G4int vecLen = 0;
124 vec.Initialize(0);
125
126 Cascade(vec, vecLen, originalIncident, currentParticle, targetParticle,
127 incidentHasChanged, targetHasChanged, quasiElastic);
128
129 CalculateMomenta(vec, vecLen, originalIncident, originalTarget,
130 modifiedOriginal, targetNucleus, currentParticle,
131 targetParticle, incidentHasChanged, targetHasChanged,
132 quasiElastic);
133
134 SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged);
135
136 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
137 delete originalTarget;
138 return &theParticleChange;
139}
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4UniformRand()
Definition: Randomize.hh:53
double mag() const
G4ParticleDefinition * GetDefinition() const
void Initialize(G4int items)
Definition: G4FastVector.hh:63
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
void CalculateMomenta(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void DoIsotopeCounting(const G4HadProjectile *theProjectile, const G4Nucleus &aNucleus)
void SetUpChange(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
const G4String & GetName() const
Definition: G4Material.hh:177
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
const G4String & GetParticleName() const
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetKineticEnergy(const G4double en)

Referenced by G4NeutronHPorLEInelasticModel::ApplyYourself().

◆ ModelDescription()

void G4LENeutronInelastic::ModelDescription ( std::ostream &  outFile) const
virtual

Reimplemented from G4HadronicInteraction.

Definition at line 37 of file G4LENeutronInelastic.cc.

38{
39 outFile << "G4LENeutronInelastic is one of the Low Energy Parameterized\n"
40 << "(LEP) models used to implement inelastic neutron scattering\n"
41 << "from nuclei. It is a re-engineered version of the GHEISHA\n"
42 << "code of H. Fesefeldt. It divides the initial collision\n"
43 << "products into backward- and forward-going clusters which are\n"
44 << "then decayed into final state hadrons. The model does not\n"
45 << "conserve energy on an event-by-event basis. It may be\n"
46 << "applied to neutrons with initial energies between 0 and 25\n"
47 << "GeV.\n";
48}

The documentation for this class was generated from the following files: