Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4INCLIFunction1D.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// INCL++ intra-nuclear cascade model
27// Pekka Kaitaniemi, CEA and Helsinki Institute of Physics
28// Davide Mancusi, CEA
29// Alain Boudard, CEA
30// Sylvie Leray, CEA
31// Joseph Cugnon, University of Liege
32//
33// INCL++ revision: v5.1.8
34//
35#define INCLXX_IN_GEANT4_MODE 1
36
37#include "globals.hh"
38
39/** \file G4INCLIFunction1D.cc
40 * \brief Functor for 1-dimensional mathematical functions
41 *
42 * \date 16 July 2011
43 * \author Davide Mancusi
44 */
45
46#include <algorithm>
47#include <cmath>
48#include <cstdlib>
49#include "G4INCLIFunction1D.hh"
50#include "G4INCLLogger.hh"
52
53namespace G4INCL {
54
55 const G4double IFunction1D::integrationCoefficients[] = {
56 2.*95.0/288.0,
57 317.0/240.0,
58 23.0/30.0,
59 793.0/720.0,
60 157.0/160.0,
61 157.0/160.0,
62 793.0/720.0,
63 23.0/30.0,
64 317.0/240.0,
65 };
66
67 G4double IFunction1D::integrate(const G4double x0, const G4double x1, const G4double step) const {
68 G4double xi = std::max(x0, xMin);
69 G4double xa = std::min(x1, xMax);
70 G4double sign;
71
72 if(x1 <= x0) {
73 sign = -1.0;
74 std::swap(xi, xa);
75 } else
76 sign = 1.0;
77
78 const G4double interval = xa - xi;
79
80 G4int nIntervals;
81 if(step<0.) {
82 nIntervals = 45;
83 } else {
84 nIntervals = G4int(interval/step);
85
86 // Round up nIntervals to the closest multiple of 9
87 G4int remainder = nIntervals % 9;
88 if (remainder != 0)
89 nIntervals += 9 - remainder;
90
91 nIntervals = std::max(nIntervals, 9);
92 }
93
94 const G4double dx = interval/nIntervals;
95 G4double result = (operator()(xi) + operator()(xa)) * integrationCoefficients[0]/2;
96 for(G4int j = 1; j<nIntervals; ++j) {
97 const G4double x = xi + interval*G4double(j)/G4double(nIntervals);
98 const unsigned index = j%9;
99 result += operator()(x) * integrationCoefficients[index];
100 }
101
102 return result*dx*sign;
103
104 }
105
107 class Primitive : public IFunction1D {
108 public:
109 Primitive(IFunction1D const * const f) :
111 theFunction(f)
112 {}
113
114 G4double operator()(const G4double x) const {
115 return theFunction->integrate(xMin,x);
116 }
117 private:
118 IFunction1D const * const theFunction;
119 } *thePrimitive = new Primitive(this);
120
121 return thePrimitive;
122 }
123
125 class InverseCDF : public IFunction1D {
126 public:
127 InverseCDF(IFunction1D const * const f) :
129 theFunction(f),
130 normalisation(1./theFunction->integrate(xMin,xMax))
131 {}
132
133 G4double operator()(const G4double x) const {
134 return std::min(1., normalisation * theFunction->integrate(xMin,x));
135 }
136 private:
137 IFunction1D const * const theFunction;
138 const G4double normalisation;
139 } *theInverseCDF = new InverseCDF(this);
140
141 InverseInterpolationTable *theTable = new InverseInterpolationTable(*theInverseCDF, nNodes);
142 delete theInverseCDF;
143 return theTable;
144 }
145
146}
147
Functor for 1-dimensional mathematical functions.
Simple interpolation table for the inverse of a IFunction1D functor.
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
virtual G4double operator()(const G4double x) const =0
Compute the value of the function.
virtual G4double getXMaximum() const
Return the maximum allowed value of the independent variable.
G4double xMin
Minimum value of the independent variable.
IFunction1D * primitive() const
Return a pointer to the (numerical) primitive to this function.
G4double xMax
Maximum value of the independent variable.
virtual G4double integrate(const G4double x0, const G4double x1, const G4double step=-1.) const
Integrate the function between two values.
virtual G4double getXMinimum() const
Return the minimum allowed value of the independent variable.
InverseInterpolationTable * inverseCDFTable(const G4int nNodes=60) const
Return a pointer to the inverse of the CDF of this function.
Class for interpolating the inverse of a 1-dimensional function.