Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4He3EvaporationProbability.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// J.M. Quesada (August2008). Based on:
29//
30// Hadronic Process: Nuclear De-excitations
31// by V. Lara (Oct 1998)
32//
33// Modified:
34// 03-09-2008 J.M. Quesada for external choice of inverse cross section option
35// 17-11-2010 V.Ivanchenko integer Z and A
36
38#include "G4SystemOfUnits.hh"
39
41 G4EvaporationProbability(3,2,2,&theCoulombBarrier) // A,Z,Gamma,&theCoulombBarrier
42{
43 ResidualA = ResidualZ = theA = theZ = FragmentA = 0;
44 ResidualAthrd = FragmentAthrd = 0.0;
45}
46
48{}
49
50G4double G4He3EvaporationProbability::CalcAlphaParam(const G4Fragment & fragment)
51 { return 1.0 + CCoeficient(fragment.GetZ_asInt()-GetZ());}
52
53G4double G4He3EvaporationProbability::CalcBetaParam(const G4Fragment & )
54 { return 0.0; }
55
56
57G4double G4He3EvaporationProbability::CCoeficient(G4int aZ)
58{
59 // Data comes from
60 // Dostrovsky, Fraenkel and Friedlander
61 // Physical Review, vol 116, num. 3 1959
62 //
63 // const G4int size = 5;
64 // G4double Zlist[5] = { 10.0, 20.0, 30.0, 50.0, 70.0};
65 // G4double Calpha[5] = { 0.10, 0.10, 0.10, 0.08, 0.06};
66 // C for He3 is equal to C for alpha times 4/3
67 G4double C = 0.0;
68
69 if (aZ <= 30)
70 {
71 C = 0.10;
72 }
73 else if (aZ <= 50)
74 {
75 C = 0.1 - (aZ - 30)*0.001;
76 }
77 else if (aZ < 70)
78 {
79 C = 0.08 - (aZ - 50)*0.001;
80 }
81 else
82 {
83 C = 0.06;
84 }
85 return C*(4.0/3.0);
86}
87
88///////////////////////////////////////////////////////////////////////////////////
89//J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections
90//OPT=0 Dostrovski's parameterization
91//OPT=1,2 Chatterjee's paramaterization
92//OPT=3,4 Kalbach's parameterization
93//
95G4He3EvaporationProbability::CrossSection(const G4Fragment & fragment, G4double K)
96{
97
98 theA=GetA();
99 theZ=GetZ();
100 ResidualA=fragment.GetA_asInt()-theA;
101 ResidualZ=fragment.GetZ_asInt()-theZ;
102
103 ResidualAthrd=fG4pow->Z13(ResidualA);
104 FragmentA=fragment.GetA_asInt();
105 FragmentAthrd=fG4pow->Z13(FragmentA);
106
107 if (OPTxs==0) {std::ostringstream errOs;
108 errOs << "We should'n be here (OPT =0) at evaporation cross section calculation (He3's)!!"
109 <<G4endl;
110 throw G4HadronicException(__FILE__, __LINE__, errOs.str());
111 return 0.;}
112 if( OPTxs==1 || OPTxs==2) return G4He3EvaporationProbability::GetOpt12( K);
113 else if (OPTxs==3 || OPTxs==4) return G4He3EvaporationProbability::GetOpt34( K);
114 else{
115 std::ostringstream errOs;
116 errOs << "BAD He3's CROSS SECTION OPTION AT EVAPORATION!!" <<G4endl;
117 throw G4HadronicException(__FILE__, __LINE__, errOs.str());
118 return 0.;
119 }
120}
121
122//********************* OPT=1,2 : Chatterjee's cross section *****************
123//(fitting to cross section from Bechetti & Greenles OM potential)
124
125G4double G4He3EvaporationProbability::GetOpt12(const G4double K)
126{
127 G4double Kc = K;
128
129 // JMQ xsec is set constat above limit of validity
130 if (K > 50*MeV) { Kc = 50*MeV; }
131
132 G4double landa ,mu ,nu ,p , Ec,q,r,ji,xs;
133
134 G4double p0 = -3.06;
135 G4double p1 = 278.5;
136 G4double p2 = -1389.;
137 G4double landa0 = -0.00535;
138 G4double landa1 = -11.16;
139 G4double mum0 = 555.5;
140 G4double mu1 = 0.40;
141 G4double nu0 = 687.4;
142 G4double nu1 = -476.3;
143 G4double nu2 = 0.509;
144 G4double delta=1.2;
145
146 Ec = 1.44*theZ*ResidualZ/(1.5*ResidualAthrd+delta);
147 p = p0 + p1/Ec + p2/(Ec*Ec);
148 landa = landa0*ResidualA + landa1;
149
150 G4double resmu1 = fG4pow->powZ(ResidualA,mu1);
151 mu = mum0*resmu1;
152 nu = resmu1*(nu0 + nu1*Ec + nu2*(Ec*Ec));
153 q = landa - nu/(Ec*Ec) - 2*p*Ec;
154 r = mu + 2*nu/Ec + p*(Ec*Ec);
155
156 ji=std::max(Kc,Ec);
157 if(Kc < Ec) { xs = p*Kc*Kc + q*Kc + r;}
158 else {xs = p*(Kc - ji)*(Kc - ji) + landa*Kc + mu + nu*(2 - Kc/ji)/ji ;}
159
160 if (xs <0.0) {xs=0.0;}
161
162 return xs;
163
164}
165
166// *********** OPT=3,4 : Kalbach's cross sections (from PRECO code)*************
167G4double G4He3EvaporationProbability::GetOpt34(const G4double K)
168//c ** 3he from o.m. of gibson et al
169{
170 G4double landa, mu, nu, p , signor(1.),sig;
171 G4double ec,ecsq,xnulam,etest(0.),a;
172 G4double b,ecut,cut,ecut2,geom,elab;
173
174 G4double flow = 1.e-18;
175 G4double spill= 1.e+18;
176
177 G4double p0 = -2.88;
178 G4double p1 = 205.6;
179 G4double p2 = -1487.;
180 G4double landa0 = 0.00459;
181 G4double landa1 = -8.93;
182 G4double mum0 = 611.2;
183 G4double mu1 = 0.35;
184 G4double nu0 = 473.8;
185 G4double nu1 = -468.2;
186 G4double nu2 = -2.225;
187
188 G4double ra=0.80;
189
190 //JMQ 13/02/09 increase of reduced radius to lower the barrier
191 // ec = 1.44 * theZ * ResidualZ / (1.5*ResidualAthrd+ra);
192 ec = 1.44 * theZ * ResidualZ / (1.7*ResidualAthrd+ra);
193 ecsq = ec * ec;
194 p = p0 + p1/ec + p2/ecsq;
195 landa = landa0*ResidualA + landa1;
196 a = fG4pow->powZ(ResidualA,mu1);
197 mu = mum0 * a;
198 nu = a* (nu0+nu1*ec+nu2*ecsq);
199 xnulam = nu / landa;
200 if (xnulam > spill) { xnulam=0.; }
201 if (xnulam >= flow) { etest = 1.2 *std::sqrt(xnulam); }
202
203 a = -2.*p*ec + landa - nu/ecsq;
204 b = p*ecsq + mu + 2.*nu/ec;
205 ecut = 0.;
206 cut = a*a - 4.*p*b;
207 if (cut > 0.) ecut = std::sqrt(cut);
208 ecut = (ecut-a) / (p+p);
209 ecut2 = ecut;
210 //JMQ 290310 for avoiding unphysical increase below minimum (at ecut)
211 // ecut<0 means that there is no cut with energy axis, i.e. xs is set
212 // to 0 bellow minimum
213 // if (cut < 0.) ecut2 = ecut - 2.;
214 if (cut < 0.) { ecut2 = ecut; }
215 elab = K * FragmentA /G4double(ResidualA);
216 sig = 0.;
217
218 if (elab <= ec) { //start for E<Ec
219 if (elab > ecut2) { sig = (p*elab*elab+a*elab+b) * signor; }
220 } //end for E<Ec
221 else { //start for E>Ec
222 sig = (landa*elab+mu+nu/elab) * signor;
223 geom = 0.;
224 if (xnulam < flow || elab < etest) { return sig; }
225 geom = std::sqrt(theA*K);
226 geom = 1.23*ResidualAthrd + ra + 4.573/geom;
227 geom = 31.416 * geom * geom;
228 sig = std::max(geom,sig);
229 } //end for E>Ec
230 return sig;
231
232}
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4int GetZ_asInt() const
Definition: G4Fragment.hh:223
G4int GetA_asInt() const
Definition: G4Fragment.hh:218
G4double Z13(G4int Z)
Definition: G4Pow.hh:110
G4double powZ(G4int Z, G4double y)
Definition: G4Pow.hh:180