Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4AdjointhIonisationModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
29
31#include "G4SystemOfUnits.hh"
32#include "G4AdjointCSManager.hh"
33#include "G4Integrator.hh"
34#include "G4TrackStatus.hh"
35#include "G4ParticleChange.hh"
36#include "G4AdjointElectron.hh"
37#include "G4AdjointProton.hh"
39#include "G4BetheBlochModel.hh"
40#include "G4BraggModel.hh"
41#include "G4Proton.hh"
42#include "G4NistManager.hh"
43
44////////////////////////////////////////////////////////////////////////////////
45//
47 G4VEmAdjointModel("Adjoint_hIonisation")
48{
49
50
51
52 UseMatrix =true;
54 ApplyCutInRange = true;
58
59 //The direct EM Modfel is taken has BetheBloch it is only used for the computation
60 // of the differential cross section.
61 //The Bragg model could be used as an alternative as it offers the same differential cross section
62
63 theDirectEMModel = new G4BetheBlochModel(projectileDefinition);
64 theBraggDirectEMModel = new G4BraggModel(projectileDefinition);
66
67 theDirectPrimaryPartDef = projectileDefinition;
69 if (projectileDefinition == G4Proton::Proton()) {
71
72 }
73
74 DefineProjectileProperty();
75}
76////////////////////////////////////////////////////////////////////////////////
77//
79{;}
80
81
82////////////////////////////////////////////////////////////////////////////////
83//
85 G4bool IsScatProjToProjCase,
86 G4ParticleChange* fParticleChange)
87{
88 if (!UseMatrix) return RapidSampleSecondaries(aTrack,IsScatProjToProjCase,fParticleChange);
89
90 const G4DynamicParticle* theAdjointPrimary =aTrack.GetDynamicParticle();
91
92 //Elastic inverse scattering
93 //---------------------------------------------------------
94 G4double adjointPrimKinEnergy = theAdjointPrimary->GetKineticEnergy();
95 G4double adjointPrimP =theAdjointPrimary->GetTotalMomentum();
96
97 if (adjointPrimKinEnergy>HighEnergyLimit*0.999){
98 return;
99 }
100
101 //Sample secondary energy
102 //-----------------------
103 G4double projectileKinEnergy = SampleAdjSecEnergyFromCSMatrix(adjointPrimKinEnergy, IsScatProjToProjCase);
104 CorrectPostStepWeight(fParticleChange,
105 aTrack.GetWeight(),
106 adjointPrimKinEnergy,
107 projectileKinEnergy,
108 IsScatProjToProjCase); //Caution !!!this weight correction should be always applied
109
110
111 //Kinematic:
112 //we consider a two body elastic scattering for the forward processes where the projectile knock on an e- at rest and gives
113 // him part of its energy
114 //----------------------------------------------------------------------------------------
115
117 G4double projectileTotalEnergy = projectileM0+projectileKinEnergy;
118 G4double projectileP2 = projectileTotalEnergy*projectileTotalEnergy - projectileM0*projectileM0;
119
120
121
122 //Companion
123 //-----------
125 if (IsScatProjToProjCase) {
127 }
128 G4double companionTotalEnergy =companionM0+ projectileKinEnergy-adjointPrimKinEnergy;
129 G4double companionP2 = companionTotalEnergy*companionTotalEnergy - companionM0*companionM0;
130
131
132 //Projectile momentum
133 //--------------------
134 G4double P_parallel = (adjointPrimP*adjointPrimP + projectileP2 - companionP2)/(2.*adjointPrimP);
135 G4double P_perp = std::sqrt( projectileP2 - P_parallel*P_parallel);
136 G4ThreeVector dir_parallel=theAdjointPrimary->GetMomentumDirection();
137 G4double phi =G4UniformRand()*2.*3.1415926;
138 G4ThreeVector projectileMomentum = G4ThreeVector(P_perp*std::cos(phi),P_perp*std::sin(phi),P_parallel);
139 projectileMomentum.rotateUz(dir_parallel);
140
141
142
143 if (!IsScatProjToProjCase ){ //kill the primary and add a secondary
144 fParticleChange->ProposeTrackStatus(fStopAndKill);
145 fParticleChange->AddSecondary(new G4DynamicParticle(theAdjEquivOfDirectPrimPartDef,projectileMomentum));
146 //G4cout<<"projectileMomentum "<<projectileMomentum<<G4endl;
147 }
148 else {
149 fParticleChange->ProposeEnergy(projectileKinEnergy);
150 fParticleChange->ProposeMomentumDirection(projectileMomentum.unit());
151 }
152
153
154
155
156}
157
158////////////////////////////////////////////////////////////////////////////////
159//
161 G4bool IsScatProjToProjCase,
162 G4ParticleChange* fParticleChange)
163{
164
165 const G4DynamicParticle* theAdjointPrimary =aTrack.GetDynamicParticle();
167
168
169 G4double adjointPrimKinEnergy = theAdjointPrimary->GetKineticEnergy();
170 G4double adjointPrimP =theAdjointPrimary->GetTotalMomentum();
171
172 if (adjointPrimKinEnergy>HighEnergyLimit*0.999){
173 return;
174 }
175
176 G4double projectileKinEnergy =0.;
177 G4double eEnergy=0.;
178 G4double newCS=currentMaterial->GetElectronDensity()*twopi_mc2_rcl2*mass;
179 if (!IsScatProjToProjCase){//1/E^2 distribution
180
181 eEnergy=adjointPrimKinEnergy;
182 G4double Emax = GetSecondAdjEnergyMaxForProdToProjCase(adjointPrimKinEnergy);
183 G4double Emin= GetSecondAdjEnergyMinForProdToProjCase(adjointPrimKinEnergy);
184 if (Emin>=Emax) return;
185 G4double a=1./Emax;
186 G4double b=1./Emin;
187 newCS=newCS*(b-a)/eEnergy;
188
189 projectileKinEnergy =1./(b- (b-a)*G4UniformRand());
190
191
192 }
193 else { G4double Emax = GetSecondAdjEnergyMaxForScatProjToProjCase(adjointPrimKinEnergy);
195 if (Emin>=Emax) return;
196 G4double diff1=Emin-adjointPrimKinEnergy;
197 G4double diff2=Emax-adjointPrimKinEnergy;
198
199 G4double t1=adjointPrimKinEnergy*(1./diff1-1./diff2);
200 G4double t2=adjointPrimKinEnergy*(1./Emin-1./Emax);
201 /*G4double f31=diff1/Emin;
202 G4double f32=diff2/Emax/f31;*/
203 G4double t3=2.*std::log(Emax/Emin);
204 G4double sum_t=t1+t2+t3;
205 newCS=newCS*sum_t/adjointPrimKinEnergy/adjointPrimKinEnergy;
206 G4double t=G4UniformRand()*sum_t;
207 if (t <=t1 ){
208 G4double q= G4UniformRand()*t1/adjointPrimKinEnergy ;
209 projectileKinEnergy =adjointPrimKinEnergy +1./(1./diff1-q);
210
211 }
212 else if (t <=t2 ) {
213 G4double q= G4UniformRand()*t2/adjointPrimKinEnergy;
214 projectileKinEnergy =1./(1./Emin-q);
215 }
216 else {
217 projectileKinEnergy=Emin*std::pow(Emax/Emin,G4UniformRand());
218
219 }
220 eEnergy=projectileKinEnergy-adjointPrimKinEnergy;
221
222
223 }
224
225
226
227 G4double diffCS_perAtom_Used=twopi_mc2_rcl2*mass*adjointPrimKinEnergy/projectileKinEnergy/projectileKinEnergy/eEnergy/eEnergy;
228
229
230
231 //Weight correction
232 //-----------------------
233 //First w_corr is set to the ratio between adjoint total CS and fwd total CS
235
236 //G4cout<<w_corr<<G4endl;
237 w_corr*=newCS/lastCS;
238 //G4cout<<w_corr<<G4endl;
239 //Then another correction is needed due to the fact that a biaised differential CS has been used rather than the one consistent with the direct model
240 //Here we consider the true diffCS as the one obtained by the numerical differentiation over Tcut of the direct CS
241
242 G4double diffCS = DiffCrossSectionPerAtomPrimToSecond(projectileKinEnergy, eEnergy,1,1);
243 w_corr*=diffCS/diffCS_perAtom_Used;
244 //G4cout<<w_corr<<G4endl;
245
246 G4double new_weight = aTrack.GetWeight()*w_corr;
247 fParticleChange->SetParentWeightByProcess(false);
248 fParticleChange->SetSecondaryWeightByProcess(false);
249 fParticleChange->ProposeParentWeight(new_weight);
250
251
252
253
254 //Kinematic:
255 //we consider a two body elastic scattering for the forward processes where the projectile knock on an e- at rest and gives
256 // him part of its energy
257 //----------------------------------------------------------------------------------------
258
260 G4double projectileTotalEnergy = projectileM0+projectileKinEnergy;
261 G4double projectileP2 = projectileTotalEnergy*projectileTotalEnergy - projectileM0*projectileM0;
262
263
264
265 //Companion
266 //-----------
268 if (IsScatProjToProjCase) {
270 }
271 G4double companionTotalEnergy =companionM0+ projectileKinEnergy-adjointPrimKinEnergy;
272 G4double companionP2 = companionTotalEnergy*companionTotalEnergy - companionM0*companionM0;
273
274
275 //Projectile momentum
276 //--------------------
277 G4double P_parallel = (adjointPrimP*adjointPrimP + projectileP2 - companionP2)/(2.*adjointPrimP);
278 G4double P_perp = std::sqrt( projectileP2 - P_parallel*P_parallel);
279 G4ThreeVector dir_parallel=theAdjointPrimary->GetMomentumDirection();
280 G4double phi =G4UniformRand()*2.*3.1415926;
281 G4ThreeVector projectileMomentum = G4ThreeVector(P_perp*std::cos(phi),P_perp*std::sin(phi),P_parallel);
282 projectileMomentum.rotateUz(dir_parallel);
283
284
285
286 if (!IsScatProjToProjCase ){ //kill the primary and add a secondary
287 fParticleChange->ProposeTrackStatus(fStopAndKill);
288 fParticleChange->AddSecondary(new G4DynamicParticle(theAdjEquivOfDirectPrimPartDef,projectileMomentum));
289 //G4cout<<"projectileMomentum "<<projectileMomentum<<G4endl;
290 }
291 else {
292 fParticleChange->ProposeEnergy(projectileKinEnergy);
293 fParticleChange->ProposeMomentumDirection(projectileMomentum.unit());
294 }
295
296
297
298
299
300
301
302}
303
304////////////////////////////////////////////////////////////////////////////////
305//
307 G4double kinEnergyProj,
308 G4double kinEnergyProd,
309 G4double Z,
310 G4double A)
311{//Probably that here the Bragg Model should be also used for kinEnergyProj/nuc<2MeV
312
313
314
315 G4double dSigmadEprod=0;
316 G4double Emax_proj = GetSecondAdjEnergyMaxForProdToProjCase(kinEnergyProd);
317 G4double Emin_proj = GetSecondAdjEnergyMinForProdToProjCase(kinEnergyProd);
318
319
320 if (kinEnergyProj>Emin_proj && kinEnergyProj<=Emax_proj){ //the produced particle should have a kinetic energy smaller than the projectile
321 G4double Tmax=kinEnergyProj;
322
323 G4double E1=kinEnergyProd;
324 G4double E2=kinEnergyProd*1.000001;
325 G4double dE=(E2-E1);
326 G4double sigma1,sigma2;
327 if (kinEnergyProj >2.*MeV){
328 sigma1=theDirectEMModel->ComputeCrossSectionPerAtom(theDirectPrimaryPartDef,kinEnergyProj,Z,A ,E1,1.e20);
329 sigma2=theDirectEMModel->ComputeCrossSectionPerAtom(theDirectPrimaryPartDef,kinEnergyProj,Z,A ,E2,1.e20);
330 }
331 else {
332 sigma1=theBraggDirectEMModel->ComputeCrossSectionPerAtom(theDirectPrimaryPartDef,kinEnergyProj,Z,A ,E1,1.e20);
333 sigma2=theBraggDirectEMModel->ComputeCrossSectionPerAtom(theDirectPrimaryPartDef,kinEnergyProj,Z,A ,E2,1.e20);
334 }
335
336
337 dSigmadEprod=(sigma1-sigma2)/dE;
338 if (dSigmadEprod>1.) {
339 G4cout<<"sigma1 "<<kinEnergyProj/MeV<<'\t'<<kinEnergyProd/MeV<<'\t'<<sigma1<<G4endl;
340 G4cout<<"sigma2 "<<kinEnergyProj/MeV<<'\t'<<kinEnergyProd/MeV<<'\t'<<sigma2<<G4endl;
341 G4cout<<"dsigma "<<kinEnergyProj/MeV<<'\t'<<kinEnergyProd/MeV<<'\t'<<dSigmadEprod<<G4endl;
342
343 }
344
345
346
347 //correction of differential cross section at high energy to correct for the suppression of particle at secondary at high
348 //energy used in the Bethe Bloch Model. This correction consist to multiply by g the probability function used
349 //to test the rejection of a secondary
350 //-------------------------
351
352 //Source code taken from G4BetheBlochModel::SampleSecondaries
353
354 G4double deltaKinEnergy = kinEnergyProd;
355
356 //Part of the taken code
357 //----------------------
358
359
360
361 // projectile formfactor - suppresion of high energy
362 // delta-electron production at high energy
363 G4double x = formfact*deltaKinEnergy;
364 if(x > 1.e-6) {
365
366
367 G4double totEnergy = kinEnergyProj + mass;
368 G4double etot2 = totEnergy*totEnergy;
369 G4double beta2 = kinEnergyProj*(kinEnergyProj + 2.0*mass)/etot2;
370 G4double f;
371 G4double f1 = 0.0;
372 f = 1.0 - beta2*deltaKinEnergy/Tmax;
373 if( 0.5 == spin ) {
374 f1 = 0.5*deltaKinEnergy*deltaKinEnergy/etot2;
375 f += f1;
376 }
377 G4double x1 = 1.0 + x;
378 G4double gg = 1.0/(x1*x1);
379 if( 0.5 == spin ) {
380 G4double x2 = 0.5*electron_mass_c2*deltaKinEnergy/(mass*mass);
381 gg *= (1.0 + magMoment2*(x2 - f1/f)/(1.0 + x2));
382 }
383 if(gg > 1.0) {
384 G4cout << "### G4BetheBlochModel in Adjoint Sim WARNING: g= " << g
385 << G4endl;
386 gg=1.;
387 }
388 //G4cout<<"gg"<<gg<<G4endl;
389 dSigmadEprod*=gg;
390 }
391
392 }
393
394 return dSigmadEprod;
395}
396
397
398
399//////////////////////////////////////////////////////////////////////////////////////////////
400//
401void G4AdjointhIonisationModel::DefineProjectileProperty()
402{
403 //Slightly modified code taken from G4BetheBlochModel::SetParticle
404 //------------------------------------------------
406 if (theDirectPrimaryPartDef->GetParticleType() == "nucleus" &&
407 pname != "deuteron" && pname != "triton") {
408 isIon = true;
409 }
410
415 chargeSquare = q*q;
416 ratio = electron_mass_c2/mass;
417 ratio2 = ratio*ratio;
418 one_plus_ratio_2=(1+ratio)*(1+ratio);
419 one_minus_ratio_2=(1-ratio)*(1-ratio);
421 *mass/(0.5*eplus*hbar_Planck*c_squared);
422 magMoment2 = magmom*magmom - 1.0;
423 formfact = 0.0;
425 G4double x = 0.8426*GeV;
426 if(spin == 0.0 && mass < GeV) {x = 0.736*GeV;}
427 else if(mass > GeV) {
428 x /= G4NistManager::Instance()->GetZ13(mass/proton_mass_c2);
429 // tlimit = 51.2*GeV*A13[iz]*A13[iz];
430 }
431 formfact = 2.0*electron_mass_c2/(x*x);
432 tlimit = 2.0/formfact;
433 }
434}
435
436////////////////////////////////////////////////////////////////////////////////
437//
439 G4double primEnergy,
440 G4bool IsScatProjToProjCase)
441{
442 if (UseMatrix) return G4VEmAdjointModel::AdjointCrossSection(aCouple,primEnergy,IsScatProjToProjCase);
443 DefineCurrentMaterial(aCouple);
444
445
446 G4double Cross=currentMaterial->GetElectronDensity()*twopi_mc2_rcl2*mass;
447
448 if (!IsScatProjToProjCase ){
449 G4double Emax_proj = GetSecondAdjEnergyMaxForProdToProjCase(primEnergy);
450 G4double Emin_proj = GetSecondAdjEnergyMinForProdToProjCase(primEnergy);
451 if (Emax_proj>Emin_proj && primEnergy > currentTcutForDirectSecond) {
452 Cross*=(1./Emin_proj -1./Emax_proj)/primEnergy;
453 }
454 else Cross=0.;
455
456
457
458
459
460
461 }
462 else {
465 G4double diff1=Emin_proj-primEnergy;
466 G4double diff2=Emax_proj-primEnergy;
467 G4double t1=(1./diff1+1./Emin_proj-1./diff2-1./Emax_proj)/primEnergy;
468 //G4double t2=2.*std::log(diff2*Emin_proj/Emax_proj/diff1)/primEnergy/primEnergy;
469 G4double t2=2.*std::log(Emax_proj/Emin_proj)/primEnergy/primEnergy;
470 Cross*=(t1+t2);
471
472
473 }
474 lastCS =Cross;
475 return Cross;
476}
477//////////////////////////////////////////////////////////////////////////////
478//
480{
481 G4double Tmax=PrimAdjEnergy*one_plus_ratio_2/(one_minus_ratio_2-2.*ratio*PrimAdjEnergy/mass);
482 return Tmax;
483}
484//////////////////////////////////////////////////////////////////////////////
485//
487{ return PrimAdjEnergy+Tcut;
488}
489//////////////////////////////////////////////////////////////////////////////
490//
492{ return HighEnergyLimit;
493}
494//////////////////////////////////////////////////////////////////////////////
495//
497{ G4double Tmin= (2*PrimAdjEnergy-4*mass + std::sqrt(4.*PrimAdjEnergy*PrimAdjEnergy +16.*mass*mass + 8.*PrimAdjEnergy*mass*(1/ratio +ratio)))/4.;
498 return Tmin;
499}
CLHEP::Hep3Vector G4ThreeVector
@ fStopAndKill
double G4double
Definition: G4Types.hh:64
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector unit() const
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
G4double GetPostStepWeightCorrection()
static G4AdjointCSManager * GetAdjointCSManager()
static G4AdjointElectron * AdjointElectron()
static G4AdjointProton * AdjointProton()
virtual G4double GetSecondAdjEnergyMaxForScatProjToProjCase(G4double PrimAdjEnergy)
G4AdjointhIonisationModel(G4ParticleDefinition *projectileDefinition)
virtual G4double GetSecondAdjEnergyMinForProdToProjCase(G4double PrimAdjEnergy)
virtual G4double GetSecondAdjEnergyMinForScatProjToProjCase(G4double PrimAdjEnergy, G4double Tcut=0)
virtual G4double AdjointCrossSection(const G4MaterialCutsCouple *aCouple, G4double primEnergy, G4bool IsScatProjToProjCase)
virtual G4double DiffCrossSectionPerAtomPrimToSecond(G4double kinEnergyProj, G4double kinEnergyProd, G4double Z, G4double A=0.)
virtual void SampleSecondaries(const G4Track &aTrack, G4bool IsScatProjToProjCase, G4ParticleChange *fParticleChange)
virtual G4double GetSecondAdjEnergyMaxForProdToProjCase(G4double PrimAdjEnergy)
void RapidSampleSecondaries(const G4Track &aTrack, G4bool IsScatProjToProjCase, G4ParticleChange *fParticleChange)
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
G4double GetTotalMomentum() const
G4double GetElectronDensity() const
Definition: G4Material.hh:216
G4double GetZ13(G4double Z)
static G4NistManager * Instance()
void AddSecondary(G4Track *aSecondary)
void ProposeEnergy(G4double finalEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
G4double GetPDGMagneticMoment() const
const G4String & GetParticleType() const
G4double GetPDGCharge() const
const G4String & GetParticleName() const
static G4Proton * Proton()
Definition: G4Proton.cc:93
G4double GetWeight() const
const G4DynamicParticle * GetDynamicParticle() const
const G4MaterialCutsCouple * GetMaterialCutsCouple() const
G4VEmModel * theDirectEMModel
virtual void CorrectPostStepWeight(G4ParticleChange *fParticleChange, G4double old_weight, G4double adjointPrimKinEnergy, G4double projectileKinEnergy, G4bool IsScatProjToProjCase)
void DefineCurrentMaterial(const G4MaterialCutsCouple *couple)
G4ParticleDefinition * theDirectPrimaryPartDef
G4double SampleAdjSecEnergyFromCSMatrix(size_t MatrixIndex, G4double prim_energy, G4bool IsScatProjToProjCase)
G4Material * currentMaterial
G4bool UseOnlyOneMatrixForAllElements
G4double currentTcutForDirectSecond
virtual G4double AdjointCrossSection(const G4MaterialCutsCouple *aCouple, G4double primEnergy, G4bool IsScatProjToProjCase)
G4ParticleDefinition * theAdjEquivOfDirectSecondPartDef
G4ParticleDefinition * theAdjEquivOfDirectPrimPartDef
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0., G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.cc:240
void ProposeTrackStatus(G4TrackStatus status)
void SetSecondaryWeightByProcess(G4bool)
void SetParentWeightByProcess(G4bool)
void ProposeParentWeight(G4double finalWeight)