Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4RPGOmegaMinusInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28
31#include "G4SystemOfUnits.hh"
32#include "Randomize.hh"
33
36 G4Nucleus &targetNucleus )
37{
38 const G4HadProjectile *originalIncident = &aTrack;
39 if (originalIncident->GetKineticEnergy()<= 0.1*MeV)
40 {
44 return &theParticleChange;
45 }
46
47 // create the target particle
48
49 G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
50// G4double targetMass = originalTarget->GetDefinition()->GetPDGMass();
51 G4ReactionProduct targetParticle( originalTarget->GetDefinition() );
52
53 if( verboseLevel > 1 )
54 {
55 const G4Material *targetMaterial = aTrack.GetMaterial();
56 G4cout << "G4RPGOmegaMinusInelastic::ApplyYourself called" << G4endl;
57 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy() << "MeV, ";
58 G4cout << "target material = " << targetMaterial->GetName() << ", ";
59 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
60 << G4endl;
61 }
62 G4ReactionProduct currentParticle( const_cast<G4ParticleDefinition *>(originalIncident->GetDefinition() ));
63 currentParticle.SetMomentum( originalIncident->Get4Momentum().vect() );
64 currentParticle.SetKineticEnergy( originalIncident->GetKineticEnergy() );
65
66 // Fermi motion and evaporation
67 // As of Geant3, the Fermi energy calculation had not been Done
68
69 G4double ek = originalIncident->GetKineticEnergy();
70 G4double amas = originalIncident->GetDefinition()->GetPDGMass();
71
72 G4double tkin = targetNucleus.Cinema( ek );
73 ek += tkin;
74 currentParticle.SetKineticEnergy( ek );
75 G4double et = ek + amas;
76 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
77 G4double pp = currentParticle.GetMomentum().mag();
78 if( pp > 0.0 )
79 {
80 G4ThreeVector momentum = currentParticle.GetMomentum();
81 currentParticle.SetMomentum( momentum * (p/pp) );
82 }
83
84 // calculate black track energies
85
86 tkin = targetNucleus.EvaporationEffects( ek );
87 ek -= tkin;
88 currentParticle.SetKineticEnergy( ek );
89 et = ek + amas;
90 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
91 pp = currentParticle.GetMomentum().mag();
92 if( pp > 0.0 )
93 {
94 G4ThreeVector momentum = currentParticle.GetMomentum();
95 currentParticle.SetMomentum( momentum * (p/pp) );
96 }
97
98 G4ReactionProduct modifiedOriginal = currentParticle;
99
100 currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
101 targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
102 G4bool incidentHasChanged = false;
103 G4bool targetHasChanged = false;
104 G4bool quasiElastic = false;
105 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
106 G4int vecLen = 0;
107 vec.Initialize( 0 );
108
109 const G4double cutOff = 0.1*MeV;
110 if( currentParticle.GetKineticEnergy() > cutOff )
111 Cascade( vec, vecLen,
112 originalIncident, currentParticle, targetParticle,
113 incidentHasChanged, targetHasChanged, quasiElastic );
114
115 CalculateMomenta( vec, vecLen,
116 originalIncident, originalTarget, modifiedOriginal,
117 targetNucleus, currentParticle, targetParticle,
118 incidentHasChanged, targetHasChanged, quasiElastic );
119
120 SetUpChange( vec, vecLen,
121 currentParticle, targetParticle,
122 incidentHasChanged );
123
124 delete originalTarget;
125 return &theParticleChange;
126}
127
128
129void G4RPGOmegaMinusInelastic::Cascade(
131 G4int& vecLen,
132 const G4HadProjectile *originalIncident,
133 G4ReactionProduct &currentParticle,
134 G4ReactionProduct &targetParticle,
135 G4bool &incidentHasChanged,
136 G4bool &targetHasChanged,
137 G4bool &quasiElastic )
138{
139 // Derived from H. Fesefeldt's original FORTRAN code CASOM
140 // OmegaMinus undergoes interaction with nucleon within a nucleus. Check if it is
141 // energetically possible to produce pions/kaons. In not, assume nuclear excitation
142 // occurs and input particle is degraded in energy. No other particles are produced.
143 // If reaction is possible, find the correct number of pions/protons/neutrons
144 // produced using an interpolation to multiplicity data. Replace some pions or
145 // protons/neutrons by kaons or strange baryons according to the average
146 // multiplicity per Inelastic reaction.
147
148 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass();
149 const G4double etOriginal = originalIncident->GetTotalEnergy();
150// const G4double pOriginal = originalIncident->GetTotalMomentum();
151 const G4double targetMass = targetParticle.GetMass();
152 G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
153 targetMass*targetMass +
154 2.0*targetMass*etOriginal );
155 G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
156 if( availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass() )
157 {
158 quasiElastic = true;
159 return;
160 }
161 static G4bool first = true;
162 const G4int numMul = 1200;
163 const G4int numSec = 60;
164 static G4double protmul[numMul], protnorm[numSec]; // proton constants
165 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
166 // np = number of pi+, nneg = number of pi-, nz = number of pi0
167 G4int counter, nt=0, np=0, nneg=0, nz=0;
168 G4double test;
169 const G4double c = 1.25;
170 const G4double b[] = { 0.70, 0.70 };
171 if( first ) // compute normalization constants, this will only be Done once
172 {
173 first = false;
174 G4int i;
175 for( i=0; i<numMul; ++i )protmul[i] = 0.0;
176 for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
177 counter = -1;
178 for( np=0; np<(numSec/3); ++np )
179 {
180 for( nneg=std::max(0,np-1); nneg<=(np+1); ++nneg )
181 {
182 for( nz=0; nz<numSec/3; ++nz )
183 {
184 if( ++counter < numMul )
185 {
186 nt = np+nneg+nz;
187 if( nt > 0 )
188 {
189 protmul[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
190 protnorm[nt-1] += protmul[counter];
191 }
192 }
193 }
194 }
195 }
196 for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
197 for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
198 counter = -1;
199 for( np=0; np<numSec/3; ++np )
200 {
201 for( nneg=np; nneg<=(np+2); ++nneg )
202 {
203 for( nz=0; nz<numSec/3; ++nz )
204 {
205 if( ++counter < numMul )
206 {
207 nt = np+nneg+nz;
208 if( (nt>0) && (nt<=numSec) )
209 {
210 neutmul[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
211 neutnorm[nt-1] += neutmul[counter];
212 }
213 }
214 }
215 }
216 }
217 for( i=0; i<numSec; ++i )
218 {
219 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
220 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
221 }
222 } // end of initialization
223
224 const G4double expxu = 82.; // upper bound for arg. of exp
225 const G4double expxl = -expxu; // lower bound for arg. of exp
232
233 // energetically possible to produce pion(s) --> inelastic scattering
234
235 G4double n, anpn;
236 GetNormalizationConstant( availableEnergy, n, anpn );
237 G4double ran = G4UniformRand();
238 G4double dum, excs = 0.0;
239 if( targetParticle.GetDefinition() == aProton )
240 {
241 counter = -1;
242 for( np=0; np<numSec/3 && ran>=excs; ++np )
243 {
244 for( nneg=std::max(0,np-1); nneg<=(np+1) && ran>=excs; ++nneg )
245 {
246 for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
247 {
248 if( ++counter < numMul )
249 {
250 nt = np+nneg+nz;
251 if( nt > 0 )
252 {
253 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
254 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
255 if( std::fabs(dum) < 1.0 )
256 {
257 if( test >= 1.0e-10 )excs += dum*test;
258 }
259 else
260 excs += dum*test;
261 }
262 }
263 }
264 }
265 }
266 if( ran >= excs ) // 3 previous loops continued to the end
267 {
268 quasiElastic = true;
269 return;
270 }
271 np--; nneg--; nz--;
272 }
273 else // target must be a neutron
274 {
275 counter = -1;
276 for( np=0; np<numSec/3 && ran>=excs; ++np )
277 {
278 for( nneg=np; nneg<=(np+2) && ran>=excs; ++nneg )
279 {
280 for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
281 {
282 if( ++counter < numMul )
283 {
284 nt = np+nneg+nz;
285 if( (nt>=1) && (nt<=numSec) )
286 {
287 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
288 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
289 if( std::fabs(dum) < 1.0 )
290 {
291 if( test >= 1.0e-10 )excs += dum*test;
292 }
293 else
294 excs += dum*test;
295 }
296 }
297 }
298 }
299 }
300 if( ran >= excs ) // 3 previous loops continued to the end
301 {
302 quasiElastic = true;
303 return;
304 }
305 np--; nneg--; nz--;
306 }
307 // number of secondary mesons determined by kno distribution
308 // check for total charge of final state mesons to determine
309 // the kind of baryons to be produced, taking into account
310 // charge and strangeness conservation
311 //
312 G4int nvefix = 0;
313 if( targetParticle.GetDefinition() == aProton )
314 {
315 if( nneg > np )
316 {
317 if( nneg == np+1 )
318 {
319 currentParticle.SetDefinitionAndUpdateE( aXiZero );
320 nvefix = 1;
321 }
322 else
323 {
324 currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
325 nvefix = 2;
326 }
327 incidentHasChanged = true;
328 }
329 else if( nneg < np )
330 {
331 targetParticle.SetDefinitionAndUpdateE( aNeutron );
332 targetHasChanged = true;
333 }
334 }
335 else // target is a neutron
336 {
337 if( np+1 < nneg )
338 {
339 if( nneg == np+2 )
340 {
341 currentParticle.SetDefinitionAndUpdateE( aXiZero );
342 incidentHasChanged = true;
343 nvefix = 1;
344 }
345 else // charge mismatch
346 {
347 currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
348 incidentHasChanged = true;
349 nvefix = 2;
350 }
351 targetParticle.SetDefinitionAndUpdateE( aProton );
352 targetHasChanged = true;
353 }
354 else if( nneg == np+1 )
355 {
356 targetParticle.SetDefinitionAndUpdateE( aProton );
357 targetHasChanged = true;
358 }
359 }
360
361 SetUpPions(np, nneg, nz, vec, vecLen);
362 for (G4int i = 0; i < vecLen && nvefix > 0; ++i) {
363 if (vec[i]->GetDefinition() == aPiMinus) {
364 if( nvefix >= 1 )vec[i]->SetDefinitionAndUpdateE(aKaonMinus);
365 --nvefix;
366 }
367 }
368
369 return;
370}
371
372 /* end of file */
373
@ isAlive
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector unit() const
double mag() const
Hep3Vector vect() const
G4ParticleDefinition * GetDefinition() const
void Initialize(G4int items)
Definition: G4FastVector.hh:63
void SetStatusChange(G4HadFinalStateStatus aS)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:113
const G4String & GetName() const
Definition: G4Material.hh:177
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
const G4String & GetParticleName() const
static G4PionMinus * PionMinus()
Definition: G4PionMinus.cc:98
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static G4Proton * Proton()
Definition: G4Proton.cc:93
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4ParticleDefinition * GetDefinition() const
G4double GetMass() const
static G4SigmaPlus * SigmaPlus()
Definition: G4SigmaPlus.cc:108
static G4XiZero * XiZero()
Definition: G4XiZero.cc:106
const G4double pi