Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4AntiNeutronAnnihilationAtRest.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4AntiNeutronAnnihilationAtRest physics process
27// Larry Felawka (TRIUMF), April 1998
28//---------------------------------------------------------------------
29
30#include <string.h>
31#include <cmath>
32#include <stdio.h>
33
35#include "G4SystemOfUnits.hh"
36#include "G4DynamicParticle.hh"
37#include "G4ParticleTypes.hh"
40#include "Randomize.hh"
41
42#define MAX_SECONDARIES 100
43
44// constructor
45
46G4AntiNeutronAnnihilationAtRest::G4AntiNeutronAnnihilationAtRest(const G4String& processName,
47 G4ProcessType aType) :
48 G4VRestProcess (processName, aType), // initialization
49 massPionMinus(G4PionMinus::PionMinus()->GetPDGMass()/GeV),
50 massPionZero(G4PionZero::PionZero()->GetPDGMass()/GeV),
51 massPionPlus(G4PionPlus::PionPlus()->GetPDGMass()/GeV),
52 massGamma(G4Gamma::Gamma()->GetPDGMass()/GeV),
53 massAntiNeutron(G4AntiNeutron::AntiNeutron()->GetPDGMass()/GeV),
54 massNeutron(G4Neutron::Neutron()->GetPDGMass()/GeV),
55 pdefGamma(G4Gamma::Gamma()),
56 pdefPionPlus(G4PionPlus::PionPlus()),
57 pdefPionZero(G4PionZero::PionZero()),
58 pdefPionMinus(G4PionMinus::PionMinus()),
59 pdefProton(G4Proton::Proton()),
60 pdefNeutron(G4Neutron::Neutron()),
61 pdefAntiNeutron(G4AntiNeutron::AntiNeutron()),
62 pdefDeuteron(G4Deuteron::Deuteron()),
63 pdefTriton(G4Triton::Triton()),
64 pdefAlpha(G4Alpha::Alpha())
65{
66 G4HadronicDeprecate("G4AntiNeutronAnnihilationAtRest");
67 if (verboseLevel>0) {
68 G4cout << GetProcessName() << " is created "<< G4endl;
69 }
74
76}
77
78// destructor
79
81{
83 delete [] pv;
84 delete [] eve;
85 delete [] gkin;
86}
87
89{
91}
92
94{
96}
97
98// methods.............................................................................
99
101 const G4ParticleDefinition& particle
102 )
103{
104 return ( &particle == pdefAntiNeutron );
105
106}
107
108// Warning - this method may be optimized away if made "inline"
110{
111 return ( ngkine );
112
113}
114
115// Warning - this method may be optimized away if made "inline"
117{
118 return ( &gkin[0] );
119
120}
121
123 const G4Track& track,
125 )
126{
127 // beggining of tracking
129
130 // condition is set to "Not Forced"
132
133 // get mean life time
135
136 if ((currentInteractionLength <0.0) || (verboseLevel>2)){
137 G4cout << "G4AntiNeutronAnnihilationAtRestProcess::AtRestGetPhysicalInteractionLength ";
138 G4cout << "[ " << GetProcessName() << "]" <<G4endl;
139 track.GetDynamicParticle()->DumpInfo();
140 G4cout << " in Material " << track.GetMaterial()->GetName() <<G4endl;
141 G4cout << "MeanLifeTime = " << currentInteractionLength/ns << "[ns]" <<G4endl;
142 }
143
145
146}
147
149 const G4Track& track,
150 const G4Step&
151 )
152//
153// Handles AntiNeutrons at rest; an AntiNeutron can either create secondaries
154// or do nothing (in which case it should be sent back to decay-handling
155// section
156//
157{
158
159// Initialize ParticleChange
160// all members of G4VParticleChange are set to equal to
161// corresponding member in G4Track
162
164
165// Store some global quantities that depend on current material and particle
166
167 globalTime = track.GetGlobalTime()/s;
168 G4Material * aMaterial = track.GetMaterial();
169 const G4int numberOfElements = aMaterial->GetNumberOfElements();
170 const G4ElementVector* theElementVector = aMaterial->GetElementVector();
171
172 const G4double* theAtomicNumberDensity = aMaterial->GetAtomicNumDensityVector();
173 G4double normalization = 0;
174 for ( G4int i1=0; i1 < numberOfElements; i1++ )
175 {
176 normalization += theAtomicNumberDensity[i1] ; // change when nucleon specific
177 // probabilities are included.
178 }
179 G4double runningSum= 0.;
180 G4double random = G4UniformRand()*normalization;
181 for ( G4int i2=0; i2 < numberOfElements; i2++ )
182 {
183 runningSum += theAtomicNumberDensity[i2]; // change when nucleon specific
184 // probabilities are included.
185 if (random<=runningSum)
186 {
187 targetCharge = G4double( ((*theElementVector)[i2])->GetZ());
188 targetAtomicMass = (*theElementVector)[i2]->GetN();
189 }
190 }
191 if (random>runningSum)
192 {
193 targetCharge = G4double( ((*theElementVector)[numberOfElements-1])->GetZ());
194 targetAtomicMass = (*theElementVector)[numberOfElements-1]->GetN();
195 }
196
197 if (verboseLevel>1) {
198 G4cout << "G4AntiNeutronAnnihilationAtRest::AtRestDoIt is invoked " <<G4endl;
199 }
200
201 G4ParticleMomentum momentum;
202 G4float localtime;
203
205
206 GenerateSecondaries(); // Generate secondaries
207
209
210 for ( G4int isec = 0; isec < ngkine; isec++ ) {
211 G4DynamicParticle* aNewParticle = new G4DynamicParticle;
212 aNewParticle->SetDefinition( gkin[isec].GetParticleDef() );
213 aNewParticle->SetMomentum( gkin[isec].GetMomentum() * GeV );
214
215 localtime = globalTime + gkin[isec].GetTOF();
216
217 G4Track* aNewTrack = new G4Track( aNewParticle, localtime*s, position );
218 aNewTrack->SetTouchableHandle(track.GetTouchableHandle());
219 aParticleChange.AddSecondary( aNewTrack );
220
221 }
222
224
225 aParticleChange.ProposeTrackStatus(fStopAndKill); // Kill the incident AntiNeutron
226
227// clear InteractionLengthLeft
228
230
231 return &aParticleChange;
232
233}
234
235
236void G4AntiNeutronAnnihilationAtRest::GenerateSecondaries()
237{
238 static G4int index;
239 static G4int l;
240 static G4int nopt;
241 static G4int i;
242 // DHW 15 May 2011: unused: static G4ParticleDefinition* jnd;
243
244 for (i = 1; i <= MAX_SECONDARIES; ++i) {
245 pv[i].SetZero();
246 }
247
248
249 ngkine = 0; // number of generated secondary particles
250 ntot = 0;
251 result.SetZero();
252 result.SetMass( massAntiNeutron );
253 result.SetKineticEnergyAndUpdate( 0. );
254 result.SetTOF( 0. );
255 result.SetParticleDef( pdefAntiNeutron );
256
257 // *** SELECT PROCESS FOR CURRENT PARTICLE ***
258
259 AntiNeutronAnnihilation(&nopt);
260
261 // *** CHECK WHETHER THERE ARE NEW PARTICLES GENERATED ***
262 if (ntot != 0 || result.GetParticleDef() != pdefAntiNeutron) {
263 // *** CURRENT PARTICLE IS NOT THE SAME AS IN THE BEGINNING OR/AND ***
264 // *** ONE OR MORE SECONDARIES HAVE BEEN GENERATED ***
265
266 // --- INITIAL PARTICLE TYPE HAS BEEN CHANGED ==> PUT NEW TYPE ON ---
267 // --- THE GEANT TEMPORARY STACK ---
268
269 // --- PUT PARTICLE ON THE STACK ---
270 gkin[0] = result;
271 gkin[0].SetTOF( result.GetTOF() * 5e-11 );
272 ngkine = 1;
273
274 // --- ALL QUANTITIES ARE TAKEN FROM THE GHEISHA STACK WHERE THE ---
275 // --- CONVENTION IS THE FOLLOWING ---
276
277 // --- ONE OR MORE SECONDARIES HAVE BEEN GENERATED ---
278 for (l = 1; l <= ntot; ++l) {
279 index = l - 1;
280 // DHW 15 May 2011: unused: jnd = eve[index].GetParticleDef();
281
282 // --- ADD PARTICLE TO THE STACK IF STACK NOT YET FULL ---
283 if (ngkine < MAX_SECONDARIES) {
284 gkin[ngkine] = eve[index];
285 gkin[ngkine].SetTOF( eve[index].GetTOF() * 5e-11 );
286 ++ngkine;
287 }
288 }
289 }
290 else {
291 // --- NO SECONDARIES GENERATED AND PARTICLE IS STILL THE SAME ---
292 // --- ==> COPY EVERYTHING BACK IN THE CURRENT GEANT STACK ---
293 ngkine = 0;
294 ntot = 0;
295 globalTime += result.GetTOF() * G4float(5e-11);
296 }
297
298 // --- LIMIT THE VALUE OF NGKINE IN CASE OF OVERFLOW ---
299 ngkine = G4int(std::min(ngkine,G4int(MAX_SECONDARIES)));
300
301} // GenerateSecondaries
302
303
304void G4AntiNeutronAnnihilationAtRest::Poisso(G4float xav, G4int *iran)
305{
306 static G4int i;
307 static G4float r, p1, p2, p3;
308 static G4int fivex;
309 static G4float rr, ran, rrr, ran1;
310
311 // *** GENERATION OF POISSON DISTRIBUTION ***
312 // *** NVE 16-MAR-1988 CERN GENEVA ***
313 // ORIGIN : H.FESEFELDT (27-OCT-1983)
314
315 // --- USE NORMAL DISTRIBUTION FOR <X> > 9.9 ---
316 if (xav > G4float(9.9)) {
317 // ** NORMAL DISTRIBUTION WITH SIGMA**2 = <X>
318 Normal(&ran1);
319 ran1 = xav + ran1 * std::sqrt(xav);
320 *iran = G4int(ran1);
321 if (*iran < 0) {
322 *iran = 0;
323 }
324 }
325 else {
326 fivex = G4int(xav * G4float(5.));
327 *iran = 0;
328 if (fivex > 0) {
329 r = std::exp(-G4double(xav));
330 ran1 = G4UniformRand();
331 if (ran1 > r) {
332 rr = r;
333 for (i = 1; i <= fivex; ++i) {
334 ++(*iran);
335 if (i <= 5) {
336 rrr = std::pow(xav, G4float(i)) / NFac(i);
337 }
338 // ** STIRLING' S FORMULA FOR LARGE NUMBERS
339 if (i > 5) {
340 rrr = std::exp(i * std::log(xav) -
341 (i + G4float(.5)) * std::log(i * G4float(1.)) +
342 i - G4float(.9189385));
343 }
344 rr += r * rrr;
345 if (ran1 <= rr) {
346 break;
347 }
348 }
349 }
350 }
351 else {
352 // ** FOR VERY SMALL XAV TRY IRAN=1,2,3
353 p1 = xav * std::exp(-G4double(xav));
354 p2 = xav * p1 / G4float(2.);
355 p3 = xav * p2 / G4float(3.);
356 ran = G4UniformRand();
357 if (ran >= p3) {
358 if (ran >= p2) {
359 if (ran >= p1) {
360 *iran = 0;
361 }
362 else {
363 *iran = 1;
364 }
365 }
366 else {
367 *iran = 2;
368 }
369 }
370 else {
371 *iran = 3;
372 }
373 }
374 }
375
376} // Poisso
377
378
379G4int G4AntiNeutronAnnihilationAtRest::NFac(G4int n)
380{
381 G4int ret_val;
382
383 static G4int i, j;
384
385 // *** NVE 16-MAR-1988 CERN GENEVA ***
386 // ORIGIN : H.FESEFELDT (27-OCT-1983)
387
388 ret_val = 1;
389 j = n;
390 if (j > 1) {
391 if (j > 10) {
392 j = 10;
393 }
394 for (i = 2; i <= j; ++i) {
395 ret_val *= i;
396 }
397 }
398 return ret_val;
399
400} // NFac
401
402
403void G4AntiNeutronAnnihilationAtRest::Normal(G4float *ran)
404{
405 static G4int i;
406
407 // *** NVE 14-APR-1988 CERN GENEVA ***
408 // ORIGIN : H.FESEFELDT (27-OCT-1983)
409
410 *ran = G4float(-6.);
411 for (i = 1; i <= 12; ++i) {
412 *ran += G4UniformRand();
413 }
414
415} // Normal
416
417
418void G4AntiNeutronAnnihilationAtRest::AntiNeutronAnnihilation(G4int *nopt)
419{
420 static G4float brr[3] = { G4float(.125),G4float(.25),G4float(.5) };
421
422 G4float r__1;
423
424 static G4int i, ii, kk;
425 static G4int nt;
426 static G4float cfa, eka;
427 static G4int ika, nbl;
428 static G4float ran, pcm;
429 static G4int isw;
430 static G4float tex;
431 static G4ParticleDefinition* ipa1;
432 static G4float ran1, ran2, ekin, tkin;
433 static G4float targ;
434 static G4ParticleDefinition* inve;
435 static G4float ekin1, ekin2, black;
436 static G4float pnrat, rmnve1, rmnve2;
437 static G4float ek, en;
438
439 // *** ANTI NEUTRON ANNIHILATION AT REST ***
440 // *** NVE 04-MAR-1988 CERN GENEVA ***
441 // ORIGIN : H.FESEFELDT (09-JULY-1987)
442
443 // NOPT=0 NO ANNIHILATION
444 // NOPT=1 ANNIH.IN PI+ PI-
445 // NOPT=2 ANNIH.IN PI0 PI0
446 // NOPT=3 ANNIH.IN PI+ PI0
447 // NOPT=4 ANNIH.IN GAMMA GAMMA
448
449 pv[1].SetZero();
450 pv[1].SetMass( massAntiNeutron );
451 pv[1].SetKineticEnergyAndUpdate( 0. );
452 pv[1].SetTOF( result.GetTOF() );
453 pv[1].SetParticleDef( result.GetParticleDef() );
454 isw = 1;
455 ran = G4UniformRand();
456 if (ran > brr[0]) {
457 isw = 2;
458 }
459 if (ran > brr[1]) {
460 isw = 3;
461 }
462 if (ran > brr[2]) {
463 isw = 4;
464 }
465 *nopt = isw;
466 // **
467 // ** EVAPORATION
468 // **
469 rmnve1 = massPionPlus;
470 rmnve2 = massPionMinus;
471 if (isw == 2) {
472 rmnve1 = massPionZero;
473 }
474 if (isw == 2) {
475 rmnve2 = massPionZero;
476 }
477 if (isw == 3) {
478 rmnve2 = massPionZero;
479 }
480 if (isw == 4) {
481 rmnve1 = massGamma;
482 }
483 if (isw == 4) {
484 rmnve2 = massGamma;
485 }
486 ek = massNeutron + massAntiNeutron - rmnve1 - rmnve2;
487 tkin = ExNu(ek);
488 ek -= tkin;
489 if (ek < G4float(1e-4)) {
490 ek = G4float(1e-4);
491 }
492 ek /= G4float(2.);
493 en = ek + (rmnve1 + rmnve2) / G4float(2.);
494 r__1 = en * en - rmnve1 * rmnve2;
495 pcm = r__1 > 0 ? std::sqrt(r__1) : 0;
496 pv[2].SetZero();
497 pv[2].SetMass( rmnve1 );
498 pv[3].SetZero();
499 pv[3].SetMass( rmnve2 );
500 if (isw > 3) {
501 pv[2].SetMass( 0. );
502 pv[3].SetMass( 0. );
503 }
504 pv[2].SetEnergyAndUpdate( std::sqrt(pv[2].GetMass()*pv[2].GetMass()+pcm*pcm) );
505 pv[2].SetTOF( result.GetTOF() );
506 pv[3].SetEnergy( std::sqrt(pv[3].GetMass()*pv[3].GetMass()+pcm*pcm) );
507 pv[3].SetMomentumAndUpdate( -pv[2].GetMomentum().x(), -pv[2].GetMomentum().y(), -pv[2].GetMomentum().z() );
508 pv[3].SetTOF( result.GetTOF() );
509 switch ((int)isw) {
510 case 1:
511 pv[2].SetParticleDef( pdefPionPlus );
512 pv[3].SetParticleDef( pdefPionMinus );
513 break;
514 case 2:
515 pv[2].SetParticleDef( pdefPionZero );
516 pv[3].SetParticleDef( pdefPionZero );
517 break;
518 case 3:
519 pv[2].SetParticleDef( pdefPionPlus );
520 pv[3].SetParticleDef( pdefPionZero );
521 break;
522 case 4:
523 pv[2].SetParticleDef( pdefGamma );
524 pv[3].SetParticleDef( pdefGamma );
525 break;
526 default:
527 break;
528 }
529 nt = 3;
530 if (targetAtomicMass >= G4float(1.5)) {
531 cfa = (targetAtomicMass - G4float(1.)) / G4float(120.) *
532 G4float(.025) * std::exp(-G4double(targetAtomicMass - G4float(1.)) /
533 G4float(120.));
534 targ = G4float(1.);
535 tex = evapEnergy1;
536 if (tex >= G4float(.001)) {
537 black = (targ * G4float(1.25) +
538 G4float(1.5)) * evapEnergy1 / (evapEnergy1 + evapEnergy3);
539 Poisso(black, &nbl);
540 if (G4float(G4int(targ) + nbl) > targetAtomicMass) {
541 nbl = G4int(targetAtomicMass - targ);
542 }
543 if (nt + nbl > (MAX_SECONDARIES - 2)) {
544 nbl = (MAX_SECONDARIES - 2) - nt;
545 }
546 if (nbl > 0) {
547 ekin = tex / nbl;
548 ekin2 = G4float(0.);
549 for (i = 1; i <= nbl; ++i) {
550 if (nt == (MAX_SECONDARIES - 2)) {
551 continue;
552 }
553 if (ekin2 > tex) {
554 break;
555 }
556 ran1 = G4UniformRand();
557 Normal(&ran2);
558 ekin1 = -G4double(ekin) * std::log(ran1) -
559 cfa * (ran2 * G4float(.5) + G4float(1.));
560 if (ekin1 < G4float(0.)) {
561 ekin1 = std::log(ran1) * G4float(-.01);
562 }
563 ekin1 *= G4float(1.);
564 ekin2 += ekin1;
565 if (ekin2 > tex) {
566 ekin1 = tex - (ekin2 - ekin1);
567 }
568 if (ekin1 < G4float(0.)) {
569 ekin1 = G4float(.001);
570 }
571 ipa1 = pdefNeutron;
572 pnrat = G4float(1.) - targetCharge / targetAtomicMass;
573 if (G4UniformRand() > pnrat) {
574 ipa1 = pdefProton;
575 }
576 ++nt;
577 pv[nt].SetZero();
578 pv[nt].SetMass( ipa1->GetPDGMass()/GeV );
579 pv[nt].SetKineticEnergyAndUpdate( ekin1 );
580 pv[nt].SetTOF( result.GetTOF() );
581 pv[nt].SetParticleDef( ipa1 );
582 }
583 if (targetAtomicMass >= G4float(230.) && ek <= G4float(2.)) {
584 ii = nt + 1;
585 kk = 0;
586 eka = ek;
587 if (eka > G4float(1.)) {
588 eka *= eka;
589 }
590 if (eka < G4float(.1)) {
591 eka = G4float(.1);
592 }
593 ika = G4int(G4float(3.6) / eka);
594 for (i = 1; i <= nt; ++i) {
595 --ii;
596 if (pv[ii].GetParticleDef() != pdefProton) {
597 continue;
598 }
599 ipa1 = pdefNeutron;
600 pv[ii].SetMass( ipa1->GetPDGMass()/GeV );
601 pv[ii].SetParticleDef( ipa1 );
602 ++kk;
603 if (kk > ika) {
604 break;
605 }
606 }
607 }
608 }
609 }
610 // **
611 // ** THEN ALSO DEUTERONS, TRITONS AND ALPHAS
612 // **
613 tex = evapEnergy3;
614 if (tex >= G4float(.001)) {
615 black = (targ * G4float(1.25) + G4float(1.5)) * evapEnergy3 /
616 (evapEnergy1 + evapEnergy3);
617 Poisso(black, &nbl);
618 if (nt + nbl > (MAX_SECONDARIES - 2)) {
619 nbl = (MAX_SECONDARIES - 2) - nt;
620 }
621 if (nbl > 0) {
622 ekin = tex / nbl;
623 ekin2 = G4float(0.);
624 for (i = 1; i <= nbl; ++i) {
625 if (nt == (MAX_SECONDARIES - 2)) {
626 continue;
627 }
628 if (ekin2 > tex) {
629 break;
630 }
631 ran1 = G4UniformRand();
632 Normal(&ran2);
633 ekin1 = -G4double(ekin) * std::log(ran1) -
634 cfa * (ran2 * G4float(.5) + G4float(1.));
635 if (ekin1 < G4float(0.)) {
636 ekin1 = std::log(ran1) * G4float(-.01);
637 }
638 ekin1 *= G4float(1.);
639 ekin2 += ekin1;
640 if (ekin2 > tex) {
641 ekin1 = tex - (ekin2 - ekin1);
642 }
643 if (ekin1 < G4float(0.)) {
644 ekin1 = G4float(.001);
645 }
646 ran = G4UniformRand();
647 inve = pdefDeuteron;
648 if (ran > G4float(.6)) {
649 inve = pdefTriton;
650 }
651 if (ran > G4float(.9)) {
652 inve = pdefAlpha;
653 }
654 ++nt;
655 pv[nt].SetZero();
656 pv[nt].SetMass( inve->GetPDGMass()/GeV );
657 pv[nt].SetKineticEnergyAndUpdate( ekin1 );
658 pv[nt].SetTOF( result.GetTOF() );
659 pv[nt].SetParticleDef( inve );
660 }
661 }
662 }
663 }
664 result = pv[2];
665 if (nt == 2) {
666 return;
667 }
668 for (i = 3; i <= nt; ++i) {
669 if (ntot >= MAX_SECONDARIES) {
670 return;
671 }
672 eve[ntot++] = pv[i];
673 }
674
675} // AntiNeutronAnnihilation
676
677
678G4double G4AntiNeutronAnnihilationAtRest::ExNu(G4float ek1)
679{
680 G4float ret_val, r__1;
681
682 static G4float cfa, gfa, ran1, ran2, ekin1, atno3;
683 static G4int magic;
684 static G4float fpdiv;
685
686 // *** NUCLEAR EVAPORATION AS FUNCTION OF ATOMIC NUMBER ATNO ***
687 // *** AND KINETIC ENERGY EKIN OF PRIMARY PARTICLE ***
688 // *** NVE 04-MAR-1988 CERN GENEVA ***
689 // ORIGIN : H.FESEFELDT (10-DEC-1986)
690
691 ret_val = G4float(0.);
692 if (targetAtomicMass >= G4float(1.5)) {
693 magic = 0;
694 if (G4int(targetCharge + G4float(.1)) == 82) {
695 magic = 1;
696 }
697 ekin1 = ek1;
698 if (ekin1 < G4float(.1)) {
699 ekin1 = G4float(.1);
700 }
701 if (ekin1 > G4float(4.)) {
702 ekin1 = G4float(4.);
703 }
704 // ** 0.35 VALUE AT 1 GEV
705 // ** 0.05 VALUE AT 0.1 GEV
706 cfa = G4float(.13043478260869565);
707 cfa = cfa * std::log(ekin1) + G4float(.35);
708 if (cfa < G4float(.15)) {
709 cfa = G4float(.15);
710 }
711 ret_val = cfa * G4float(7.716) * std::exp(-G4double(cfa));
712 atno3 = targetAtomicMass;
713 if (atno3 > G4float(120.)) {
714 atno3 = G4float(120.);
715 }
716 cfa = (atno3 - G4float(1.)) /
717 G4float(120.) * std::exp(-G4double(atno3 - G4float(1.)) / G4float(120.));
718 ret_val *= cfa;
719 r__1 = ekin1;
720 fpdiv = G4float(1.) - r__1 * r__1 * G4float(.25);
721 if (fpdiv < G4float(.5)) {
722 fpdiv = G4float(.5);
723 }
724 gfa = (targetAtomicMass - G4float(1.)) /
725 G4float(70.) * G4float(2.) *
726 std::exp(-G4double(targetAtomicMass - G4float(1.)) / G4float(70.));
727 evapEnergy1 = ret_val * fpdiv;
728 evapEnergy3 = ret_val - evapEnergy1;
729 Normal(&ran1);
730 Normal(&ran2);
731 if (magic == 1) {
732 ran1 = G4float(0.);
733 ran2 = G4float(0.);
734 }
735 evapEnergy1 *= ran1 * gfa + G4float(1.);
736 if (evapEnergy1 < G4float(0.)) {
737 evapEnergy1 = G4float(0.);
738 }
739 evapEnergy3 *= ran2 * gfa + G4float(1.);
740 if (evapEnergy3 < G4float(0.)) {
741 evapEnergy3 = G4float(0.);
742 }
743 while ((ret_val = evapEnergy1 + evapEnergy3) >= ek1) {
744 evapEnergy1 *= G4float(1.) - G4UniformRand() * G4float(.5);
745 evapEnergy3 *= G4float(1.) - G4UniformRand() * G4float(.5);
746 }
747 }
748 return ret_val;
749
750} // ExNu
#define MAX_SECONDARIES
std::vector< G4Element * > G4ElementVector
G4double condition(const G4ErrorSymMatrix &m)
G4ForceCondition
@ NotForced
#define G4HadronicDeprecate(name)
@ fHadronAtRest
G4ProcessType
@ fStopAndKill
double G4double
Definition: G4Types.hh:64
float G4float
Definition: G4Types.hh:65
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
void PreparePhysicsTable(const G4ParticleDefinition &)
G4double GetMeanLifeTime(const G4Track &, G4ForceCondition *)
G4double AtRestGetPhysicalInteractionLength(const G4Track &, G4ForceCondition *)
void BuildPhysicsTable(const G4ParticleDefinition &)
G4VParticleChange * AtRestDoIt(const G4Track &, const G4Step &)
G4bool IsApplicable(const G4ParticleDefinition &)
void DumpInfo(G4int mode=0) const
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void SetMomentum(const G4ThreeVector &momentum)
void SetEnergyAndUpdate(G4double e)
G4ParticleDefinition * GetParticleDef()
void SetParticleDef(G4ParticleDefinition *c)
void SetMomentumAndUpdate(G4ParticleMomentum mom)
void SetKineticEnergyAndUpdate(G4double ekin)
void DeRegisterExtraProcess(G4VProcess *)
void RegisterExtraProcess(G4VProcess *)
void RegisterParticleForExtraProcess(G4VProcess *, const G4ParticleDefinition *)
static G4HadronicProcessStore * Instance()
void PrintInfo(const G4ParticleDefinition *)
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:189
size_t GetNumberOfElements() const
Definition: G4Material.hh:185
const G4double * GetAtomicNumDensityVector() const
Definition: G4Material.hh:215
const G4String & GetName() const
Definition: G4Material.hh:177
void AddSecondary(G4Track *aSecondary)
virtual void Initialize(const G4Track &)
Definition: G4Step.hh:78
const G4ThreeVector & GetPosition() const
void SetTouchableHandle(const G4TouchableHandle &apValue)
G4double GetGlobalTime() const
G4Material * GetMaterial() const
const G4DynamicParticle * GetDynamicParticle() const
const G4TouchableHandle & GetTouchableHandle() const
void ProposeTrackStatus(G4TrackStatus status)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
void SetNumberOfSecondaries(G4int totSecondaries)
G4double currentInteractionLength
Definition: G4VProcess.hh:297
virtual void ResetNumberOfInteractionLengthLeft()
Definition: G4VProcess.cc:92
G4ParticleChange aParticleChange
Definition: G4VProcess.hh:289
G4int verboseLevel
Definition: G4VProcess.hh:368
G4double theNumberOfInteractionLengthLeft
Definition: G4VProcess.hh:293
void SetProcessSubType(G4int)
Definition: G4VProcess.hh:403
const G4String & GetProcessName() const
Definition: G4VProcess.hh:379
#define ns
Definition: xmlparse.cc:597