Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4UrbanMscModel93.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// -------------------------------------------------------------------
30//
31// GEANT4 Class file
32//
33//
34// File name: G4UrbanMscModel93
35//
36// Author: Laszlo Urban
37//
38// Creation date: 06.03.2008
39//
40// Modifications:
41//
42// 06-03-2008 starting point : G4UrbanMscModel2 = G4UrbanMscModel 9.1 ref 02
43//
44// 13-03-08 Bug in SampleScattering (which caused lateral asymmetry) fixed
45// (L.Urban)
46//
47// 14-03-08 Simplification of step limitation in ComputeTruePathLengthLimit,
48// + tlimitmin is the same for UseDistancetoBoundary and
49// UseSafety (L.Urban)
50//
51// 16-03-08 Reorganization of SampleCosineTheta + new method SimpleScattering
52// SimpleScattering is used if the relative energy loss is too big
53// or theta0 is too big (see data members rellossmax, theta0max)
54// (L.Urban)
55//
56// 17-03-08 tuning of the correction factor in ComputeTheta0 (L.Urban)
57//
58// 19-03-08 exponent c of the 'tail' model function is not equal to 2 any more,
59// value of c has been extracted from some e- scattering data (L.Urban)
60//
61// 24-03-08 Step limitation in ComputeTruePathLengthLimit has been
62// simplified further + some data members have been removed (L.Urban)
63//
64// 24-07-08 central part of scattering angle (theta0) has been tuned
65// tail of the scattering angle distribution has been tuned
66// using some e- and proton scattering data
67//
68// 05-08-08 bugfix in ComputeTruePathLengthLimit (L.Urban)
69//
70// 09-10-08 theta0 and tail have been retuned using some e-,mu,proton
71// scattering data (L.Urban)
72// + single scattering without path length correction for
73// small steps (t < tlimitmin, for UseDistanceToBoundary only)
74//
75// 15-10-08 Moliere-Bethe screening in the single scattering part(L.Urban)
76//
77// 17-10-08 stepping similar to that in model (9.1) for UseSafety case
78// for e+/e- in order to speed up the code for calorimeters
79//
80// 23-10-08 bugfix in the screeningparameter of the single scattering part,
81// some technical change in order to speed up the code (UpdateCache)
82//
83// 27-10-08 bugfix in ComputeTruePathLengthLimit (affects UseDistanceToBoundary
84// stepping type only) (L.Urban)
85//
86// 28-10-09 V.Ivanchenko moved G4UrbanMscModel2 to G4UrbanMscModel93,
87// now it is a frozen version of the Urban model corresponding
88// to g4 9.3
89
90// Class Description:
91//
92// Implementation of the model of multiple scattering based on
93// H.W.Lewis Phys Rev 78 (1950) 526 and others
94
95// -------------------------------------------------------------------
96// In its present form the model can be used for simulation
97// of the e-/e+, muon and charged hadron multiple scattering
98//
99
100
101//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
102//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
103
104#include "G4UrbanMscModel93.hh"
105#include "G4PhysicalConstants.hh"
106#include "G4SystemOfUnits.hh"
107#include "Randomize.hh"
108#include "G4Electron.hh"
109#include "G4LossTableManager.hh"
111
112#include "G4Poisson.hh"
113#include "globals.hh"
114
115//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
116
117using namespace std;
118
120 : G4VMscModel(nam)
121{
122 masslimite = 0.6*MeV;
123 lambdalimit = 1.*mm;
124 fr = 0.02;
125 taubig = 8.0;
126 tausmall = 1.e-16;
127 taulim = 1.e-6;
128 currentTau = taulim;
129 tlimitminfix = 1.e-6*mm;
130 stepmin = tlimitminfix;
131 smallstep = 1.e10;
132 currentRange = 0. ;
133 rangeinit = 0.;
134 tlimit = 1.e10*mm;
135 tlimitmin = 10.*tlimitminfix;
136 tgeom = 1.e50*mm;
137 geombig = 1.e50*mm;
138 geommin = 1.e-3*mm;
139 geomlimit = geombig;
140 presafety = 0.*mm;
141
142 y = 0.;
143
144 Zold = 0.;
145 Zeff = 1.;
146 Z2 = 1.;
147 Z23 = 1.;
148 lnZ = 0.;
149 coeffth1 = 0.;
150 coeffth2 = 0.;
151 coeffc1 = 0.;
152 coeffc2 = 0.;
153 scr1ini = fine_structure_const*fine_structure_const*
154 electron_mass_c2*electron_mass_c2/(0.885*0.885*4.*pi);
155 scr2ini = 3.76*fine_structure_const*fine_structure_const;
156 scr1 = 0.;
157 scr2 = 0.;
158
159 theta0max = pi/6.;
160 rellossmax = 0.50;
161 third = 1./3.;
162 particle = 0;
163 theManager = G4LossTableManager::Instance();
164 firstStep = true;
165 inside = false;
166 insideskin = false;
167
168 skindepth = skin*stepmin;
169
170 mass = proton_mass_c2;
171 charge = ChargeSquare = 1.0;
172 currentKinEnergy = currentRadLength = lambda0 = lambdaeff = tPathLength
173 = zPathLength = par1 = par2 = par3 = 0;
174
175 currentMaterialIndex = -1;
176 fParticleChange = 0;
177 couple = 0;
178}
179
180//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
181
183{}
184
185//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
186
188 const G4DataVector&)
189{
190 skindepth = skin*stepmin;
191
192 // set values of some data members
193 SetParticle(p);
194
195 if(p->GetPDGMass() > MeV) {
196 G4cout << "### WARNING: G4UrbanMscModel93 model is used for "
197 << p->GetParticleName() << " !!! " << G4endl;
198 G4cout << "### This model should be used only for e+-"
199 << G4endl;
200 }
201
202 fParticleChange = GetParticleChangeForMSC(p);
203}
204
205//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
206
208 const G4ParticleDefinition* part,
209 G4double KineticEnergy,
210 G4double AtomicNumber,G4double,
212{
213 const G4double sigmafactor = twopi*classic_electr_radius*classic_electr_radius;
214 const G4double epsfactor = 2.*electron_mass_c2*electron_mass_c2*
215 Bohr_radius*Bohr_radius/(hbarc*hbarc);
216 const G4double epsmin = 1.e-4 , epsmax = 1.e10;
217
218 const G4double Zdat[15] = { 4., 6., 13., 20., 26., 29., 32., 38., 47.,
219 50., 56., 64., 74., 79., 82. };
220
221 const G4double Tdat[22] = { 100*eV, 200*eV, 400*eV, 700*eV,
222 1*keV, 2*keV, 4*keV, 7*keV,
223 10*keV, 20*keV, 40*keV, 70*keV,
224 100*keV, 200*keV, 400*keV, 700*keV,
225 1*MeV, 2*MeV, 4*MeV, 7*MeV,
226 10*MeV, 20*MeV};
227
228 // corr. factors for e-/e+ lambda for T <= Tlim
229 G4double celectron[15][22] =
230 {{1.125,1.072,1.051,1.047,1.047,1.050,1.052,1.054,
231 1.054,1.057,1.062,1.069,1.075,1.090,1.105,1.111,
232 1.112,1.108,1.100,1.093,1.089,1.087 },
233 {1.408,1.246,1.143,1.096,1.077,1.059,1.053,1.051,
234 1.052,1.053,1.058,1.065,1.072,1.087,1.101,1.108,
235 1.109,1.105,1.097,1.090,1.086,1.082 },
236 {2.833,2.268,1.861,1.612,1.486,1.309,1.204,1.156,
237 1.136,1.114,1.106,1.106,1.109,1.119,1.129,1.132,
238 1.131,1.124,1.113,1.104,1.099,1.098 },
239 {3.879,3.016,2.380,2.007,1.818,1.535,1.340,1.236,
240 1.190,1.133,1.107,1.099,1.098,1.103,1.110,1.113,
241 1.112,1.105,1.096,1.089,1.085,1.098 },
242 {6.937,4.330,2.886,2.256,1.987,1.628,1.395,1.265,
243 1.203,1.122,1.080,1.065,1.061,1.063,1.070,1.073,
244 1.073,1.070,1.064,1.059,1.056,1.056 },
245 {9.616,5.708,3.424,2.551,2.204,1.762,1.485,1.330,
246 1.256,1.155,1.099,1.077,1.070,1.068,1.072,1.074,
247 1.074,1.070,1.063,1.059,1.056,1.052 },
248 {11.72,6.364,3.811,2.806,2.401,1.884,1.564,1.386,
249 1.300,1.180,1.112,1.082,1.073,1.066,1.068,1.069,
250 1.068,1.064,1.059,1.054,1.051,1.050 },
251 {18.08,8.601,4.569,3.183,2.662,2.025,1.646,1.439,
252 1.339,1.195,1.108,1.068,1.053,1.040,1.039,1.039,
253 1.039,1.037,1.034,1.031,1.030,1.036 },
254 {18.22,10.48,5.333,3.713,3.115,2.367,1.898,1.631,
255 1.498,1.301,1.171,1.105,1.077,1.048,1.036,1.033,
256 1.031,1.028,1.024,1.022,1.021,1.024 },
257 {14.14,10.65,5.710,3.929,3.266,2.453,1.951,1.669,
258 1.528,1.319,1.178,1.106,1.075,1.040,1.027,1.022,
259 1.020,1.017,1.015,1.013,1.013,1.020 },
260 {14.11,11.73,6.312,4.240,3.478,2.566,2.022,1.720,
261 1.569,1.342,1.186,1.102,1.065,1.022,1.003,0.997,
262 0.995,0.993,0.993,0.993,0.993,1.011 },
263 {22.76,20.01,8.835,5.287,4.144,2.901,2.219,1.855,
264 1.677,1.410,1.224,1.121,1.073,1.014,0.986,0.976,
265 0.974,0.972,0.973,0.974,0.975,0.987 },
266 {50.77,40.85,14.13,7.184,5.284,3.435,2.520,2.059,
267 1.837,1.512,1.283,1.153,1.091,1.010,0.969,0.954,
268 0.950,0.947,0.949,0.952,0.954,0.963 },
269 {65.87,59.06,15.87,7.570,5.567,3.650,2.682,2.182,
270 1.939,1.579,1.325,1.178,1.108,1.014,0.965,0.947,
271 0.941,0.938,0.940,0.944,0.946,0.954 },
272 {55.60,47.34,15.92,7.810,5.755,3.767,2.760,2.239,
273 1.985,1.609,1.343,1.188,1.113,1.013,0.960,0.939,
274 0.933,0.930,0.933,0.936,0.939,0.949 }};
275
276 G4double cpositron[15][22] = {
277 {2.589,2.044,1.658,1.446,1.347,1.217,1.144,1.110,
278 1.097,1.083,1.080,1.086,1.092,1.108,1.123,1.131,
279 1.131,1.126,1.117,1.108,1.103,1.100 },
280 {3.904,2.794,2.079,1.710,1.543,1.325,1.202,1.145,
281 1.122,1.096,1.089,1.092,1.098,1.114,1.130,1.137,
282 1.138,1.132,1.122,1.113,1.108,1.102 },
283 {7.970,6.080,4.442,3.398,2.872,2.127,1.672,1.451,
284 1.357,1.246,1.194,1.179,1.178,1.188,1.201,1.205,
285 1.203,1.190,1.173,1.159,1.151,1.145 },
286 {9.714,7.607,5.747,4.493,3.815,2.777,2.079,1.715,
287 1.553,1.353,1.253,1.219,1.211,1.214,1.225,1.228,
288 1.225,1.210,1.191,1.175,1.166,1.174 },
289 {17.97,12.95,8.628,6.065,4.849,3.222,2.275,1.820,
290 1.624,1.382,1.259,1.214,1.202,1.202,1.214,1.219,
291 1.217,1.203,1.184,1.169,1.160,1.151 },
292 {24.83,17.06,10.84,7.355,5.767,3.707,2.546,1.996,
293 1.759,1.465,1.311,1.252,1.234,1.228,1.238,1.241,
294 1.237,1.222,1.201,1.184,1.174,1.159 },
295 {23.26,17.15,11.52,8.049,6.375,4.114,2.792,2.155,
296 1.880,1.535,1.353,1.281,1.258,1.247,1.254,1.256,
297 1.252,1.234,1.212,1.194,1.183,1.170 },
298 {22.33,18.01,12.86,9.212,7.336,4.702,3.117,2.348,
299 2.015,1.602,1.385,1.297,1.268,1.251,1.256,1.258,
300 1.254,1.237,1.214,1.195,1.185,1.179 },
301 {33.91,24.13,15.71,10.80,8.507,5.467,3.692,2.808,
302 2.407,1.873,1.564,1.425,1.374,1.330,1.324,1.320,
303 1.312,1.288,1.258,1.235,1.221,1.205 },
304 {32.14,24.11,16.30,11.40,9.015,5.782,3.868,2.917,
305 2.490,1.925,1.596,1.447,1.391,1.342,1.332,1.327,
306 1.320,1.294,1.264,1.240,1.226,1.214 },
307 {29.51,24.07,17.19,12.28,9.766,6.238,4.112,3.066,
308 2.602,1.995,1.641,1.477,1.414,1.356,1.342,1.336,
309 1.328,1.302,1.270,1.245,1.231,1.233 },
310 {38.19,30.85,21.76,15.35,12.07,7.521,4.812,3.498,
311 2.926,2.188,1.763,1.563,1.484,1.405,1.382,1.371,
312 1.361,1.330,1.294,1.267,1.251,1.239 },
313 {49.71,39.80,27.96,19.63,15.36,9.407,5.863,4.155,
314 3.417,2.478,1.944,1.692,1.589,1.480,1.441,1.423,
315 1.409,1.372,1.330,1.298,1.280,1.258 },
316 {59.25,45.08,30.36,20.83,16.15,9.834,6.166,4.407,
317 3.641,2.648,2.064,1.779,1.661,1.531,1.482,1.459,
318 1.442,1.400,1.354,1.319,1.299,1.272 },
319 {56.38,44.29,30.50,21.18,16.51,10.11,6.354,4.542,
320 3.752,2.724,2.116,1.817,1.692,1.554,1.499,1.474,
321 1.456,1.412,1.364,1.328,1.307,1.282 }};
322
323 //data/corrections for T > Tlim
324 G4double Tlim = 10.*MeV;
325 G4double beta2lim = Tlim*(Tlim+2.*electron_mass_c2)/
326 ((Tlim+electron_mass_c2)*(Tlim+electron_mass_c2));
327 G4double bg2lim = Tlim*(Tlim+2.*electron_mass_c2)/
328 (electron_mass_c2*electron_mass_c2);
329
330 G4double sig0[15] = {0.2672*barn, 0.5922*barn, 2.653*barn, 6.235*barn,
331 11.69*barn , 13.24*barn , 16.12*barn, 23.00*barn ,
332 35.13*barn , 39.95*barn , 50.85*barn, 67.19*barn ,
333 91.15*barn , 104.4*barn , 113.1*barn};
334
335 G4double hecorr[15] = {120.70, 117.50, 105.00, 92.92, 79.23, 74.510, 68.29,
336 57.39, 41.97, 36.14, 24.53, 10.21, -7.855, -16.84,
337 -22.30};
338
339 G4double sigma;
340 SetParticle(part);
341
342 Z23 = pow(AtomicNumber,2./3.);
343
344 // correction if particle .ne. e-/e+
345 // compute equivalent kinetic energy
346 // lambda depends on p*beta ....
347
348 G4double eKineticEnergy = KineticEnergy;
349
350 if(mass > electron_mass_c2)
351 {
352 G4double TAU = KineticEnergy/mass ;
353 G4double c = mass*TAU*(TAU+2.)/(electron_mass_c2*(TAU+1.)) ;
354 G4double w = c-2. ;
355 G4double tau = 0.5*(w+sqrt(w*w+4.*c)) ;
356 eKineticEnergy = electron_mass_c2*tau ;
357 }
358
359 G4double eTotalEnergy = eKineticEnergy + electron_mass_c2 ;
360 G4double beta2 = eKineticEnergy*(eTotalEnergy+electron_mass_c2)
361 /(eTotalEnergy*eTotalEnergy);
362 G4double bg2 = eKineticEnergy*(eTotalEnergy+electron_mass_c2)
363 /(electron_mass_c2*electron_mass_c2);
364
365 G4double eps = epsfactor*bg2/Z23;
366
367 if (eps<epsmin) sigma = 2.*eps*eps;
368 else if(eps<epsmax) sigma = log(1.+2.*eps)-2.*eps/(1.+2.*eps);
369 else sigma = log(2.*eps)-1.+1./eps;
370
371 sigma *= ChargeSquare*AtomicNumber*AtomicNumber/(beta2*bg2);
372
373 // interpolate in AtomicNumber and beta2
374 G4double c1,c2,cc1,cc2,corr;
375
376 // get bin number in Z
377 G4int iZ = 14;
378 while ((iZ>=0)&&(Zdat[iZ]>=AtomicNumber)) iZ -= 1;
379 if (iZ==14) iZ = 13;
380 if (iZ==-1) iZ = 0 ;
381
382 G4double ZZ1 = Zdat[iZ];
383 G4double ZZ2 = Zdat[iZ+1];
384 G4double ratZ = (AtomicNumber-ZZ1)*(AtomicNumber+ZZ1)/
385 ((ZZ2-ZZ1)*(ZZ2+ZZ1));
386
387 if(eKineticEnergy <= Tlim)
388 {
389 // get bin number in T (beta2)
390 G4int iT = 21;
391 while ((iT>=0)&&(Tdat[iT]>=eKineticEnergy)) iT -= 1;
392 if(iT==21) iT = 20;
393 if(iT==-1) iT = 0 ;
394
395 // calculate betasquare values
396 G4double T = Tdat[iT], E = T + electron_mass_c2;
397 G4double b2small = T*(E+electron_mass_c2)/(E*E);
398
399 T = Tdat[iT+1]; E = T + electron_mass_c2;
400 G4double b2big = T*(E+electron_mass_c2)/(E*E);
401 G4double ratb2 = (beta2-b2small)/(b2big-b2small);
402
403 if (charge < 0.)
404 {
405 c1 = celectron[iZ][iT];
406 c2 = celectron[iZ+1][iT];
407 cc1 = c1+ratZ*(c2-c1);
408
409 c1 = celectron[iZ][iT+1];
410 c2 = celectron[iZ+1][iT+1];
411 cc2 = c1+ratZ*(c2-c1);
412
413 corr = cc1+ratb2*(cc2-cc1);
414
415 sigma *= sigmafactor/corr;
416 }
417 else
418 {
419 c1 = cpositron[iZ][iT];
420 c2 = cpositron[iZ+1][iT];
421 cc1 = c1+ratZ*(c2-c1);
422
423 c1 = cpositron[iZ][iT+1];
424 c2 = cpositron[iZ+1][iT+1];
425 cc2 = c1+ratZ*(c2-c1);
426
427 corr = cc1+ratb2*(cc2-cc1);
428
429 sigma *= sigmafactor/corr;
430 }
431 }
432 else
433 {
434 c1 = bg2lim*sig0[iZ]*(1.+hecorr[iZ]*(beta2-beta2lim))/bg2;
435 c2 = bg2lim*sig0[iZ+1]*(1.+hecorr[iZ+1]*(beta2-beta2lim))/bg2;
436 if((AtomicNumber >= ZZ1) && (AtomicNumber <= ZZ2))
437 sigma = c1+ratZ*(c2-c1) ;
438 else if(AtomicNumber < ZZ1)
439 sigma = AtomicNumber*AtomicNumber*c1/(ZZ1*ZZ1);
440 else if(AtomicNumber > ZZ2)
441 sigma = AtomicNumber*AtomicNumber*c2/(ZZ2*ZZ2);
442 }
443 return sigma;
444
445}
446
447//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
448
450{
451 SetParticle(track->GetDynamicParticle()->GetDefinition());
452 firstStep = true;
453 inside = false;
454 insideskin = false;
455 tlimit = geombig;
456}
457
458//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
459
461 const G4Track& track,
462 G4double& currentMinimalStep)
463{
464 tPathLength = currentMinimalStep;
465 const G4DynamicParticle* dp = track.GetDynamicParticle();
466 G4StepPoint* sp = track.GetStep()->GetPreStepPoint();
467 G4StepStatus stepStatus = sp->GetStepStatus();
468 couple = track.GetMaterialCutsCouple();
469 SetCurrentCouple(couple);
470 currentMaterialIndex = couple->GetIndex();
471 currentKinEnergy = dp->GetKineticEnergy();
472 currentRange = GetRange(particle,currentKinEnergy,couple);
473 lambda0 = GetTransportMeanFreePath(particle,currentKinEnergy);
474
475 // stop here if small range particle
476 if(inside || tPathLength < tlimitminfix) {
477 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
478 }
479
480 if(tPathLength > currentRange) { tPathLength = currentRange; }
481
482 presafety = sp->GetSafety();
483
484 // G4cout << "G4Urban2::StepLimit tPathLength= "
485 // <<tPathLength<<" safety= " << presafety
486 // << " range= " <<currentRange<< " lambda= "<<lambda0
487 // << " Alg: " << steppingAlgorithm <<G4endl;
488
489 // far from geometry boundary
490 if(currentRange < presafety)
491 {
492 inside = true;
493 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
494 }
495
496 // standard version
497 //
499 {
500 //compute geomlimit and presafety
501 geomlimit = ComputeGeomLimit(track, presafety, currentRange);
502
503 // is it far from boundary ?
504 if(currentRange < presafety)
505 {
506 inside = true;
507 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
508 }
509
510 smallstep += 1.;
511 insideskin = false;
512
513 if(firstStep || stepStatus == fGeomBoundary)
514 {
515 rangeinit = currentRange;
516 if(firstStep) smallstep = 1.e10;
517 else smallstep = 1.;
518
519 //define stepmin here (it depends on lambda!)
520 //rough estimation of lambda_elastic/lambda_transport
521 G4double rat = currentKinEnergy/MeV ;
522 rat = 1.e-3/(rat*(10.+rat)) ;
523 //stepmin ~ lambda_elastic
524 stepmin = rat*lambda0;
525 skindepth = skin*stepmin;
526 //define tlimitmin
527 tlimitmin = 10.*stepmin;
528 if(tlimitmin < tlimitminfix) tlimitmin = tlimitminfix;
529 //G4cout << "rangeinit= " << rangeinit << " stepmin= " << stepmin
530 // << " tlimitmin= " << tlimitmin << " geomlimit= " << geomlimit <<G4endl;
531 // constraint from the geometry
532 if((geomlimit < geombig) && (geomlimit > geommin))
533 {
534 // geomlimit is a geometrical step length
535 // transform it to true path length (estimation)
536 if((1.-geomlimit/lambda0) > 0.)
537 geomlimit = -lambda0*log(1.-geomlimit/lambda0)+tlimitmin ;
538
539 if(stepStatus == fGeomBoundary)
540 tgeom = geomlimit/facgeom;
541 else
542 tgeom = 2.*geomlimit/facgeom;
543 }
544 else
545 tgeom = geombig;
546 }
547
548
549 //step limit
550 tlimit = facrange*rangeinit;
551 if(tlimit < facsafety*presafety)
552 tlimit = facsafety*presafety;
553
554 //lower limit for tlimit
555 if(tlimit < tlimitmin) tlimit = tlimitmin;
556
557 if(tlimit > tgeom) tlimit = tgeom;
558
559 //G4cout << "tgeom= " << tgeom << " geomlimit= " << geomlimit
560 // << " tlimit= " << tlimit << " presafety= " << presafety << G4endl;
561
562 // shortcut
563 if((tPathLength < tlimit) && (tPathLength < presafety) &&
564 (smallstep >= skin) && (tPathLength < geomlimit-0.999*skindepth))
565 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
566
567 // step reduction near to boundary
568 if(smallstep < skin)
569 {
570 tlimit = stepmin;
571 insideskin = true;
572 }
573 else if(geomlimit < geombig)
574 {
575 if(geomlimit > skindepth)
576 {
577 if(tlimit > geomlimit-0.999*skindepth)
578 tlimit = geomlimit-0.999*skindepth;
579 }
580 else
581 {
582 insideskin = true;
583 if(tlimit > stepmin) tlimit = stepmin;
584 }
585 }
586
587 if(tlimit < stepmin) tlimit = stepmin;
588
589 // randomize 1st step or 1st 'normal' step in volume
590 if(firstStep || ((smallstep == skin) && !insideskin))
591 {
592 G4double temptlimit = tlimit;
593 if(temptlimit > tlimitmin)
594 {
595 do {
596 temptlimit = G4RandGauss::shoot(tlimit,0.3*tlimit);
597 } while ((temptlimit < tlimitmin) ||
598 (temptlimit > 2.*tlimit-tlimitmin));
599 }
600 else
601 temptlimit = tlimitmin;
602 if(tPathLength > temptlimit) tPathLength = temptlimit;
603 }
604 else
605 {
606 if(tPathLength > tlimit) tPathLength = tlimit ;
607 }
608
609 }
610 // for 'normal' simulation with or without magnetic field
611 // there no small step/single scattering at boundaries
612 else if(steppingAlgorithm == fUseSafety)
613 {
614 // compute presafety again if presafety <= 0 and no boundary
615 // i.e. when it is needed for optimization purposes
616 if((stepStatus != fGeomBoundary) && (presafety < tlimitminfix))
617 presafety = ComputeSafety(sp->GetPosition(),tPathLength);
618
619 // is far from boundary
620 if(currentRange < presafety)
621 {
622 inside = true;
623 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
624 }
625
626 if(firstStep || stepStatus == fGeomBoundary)
627 {
628 rangeinit = currentRange;
629 fr = facrange;
630 // 9.1 like stepping for e+/e- only (not for muons,hadrons)
631 if(mass < masslimite)
632 {
633 if(lambda0 > currentRange)
634 rangeinit = lambda0;
635 if(lambda0 > lambdalimit)
636 fr *= 0.75+0.25*lambda0/lambdalimit;
637 }
638
639 //lower limit for tlimit
640 G4double rat = currentKinEnergy/MeV ;
641 rat = 1.e-3/(rat*(10.+rat)) ;
642 tlimitmin = 10.*lambda0*rat;
643 if(tlimitmin < tlimitminfix) tlimitmin = tlimitminfix;
644 }
645 //step limit
646 tlimit = fr*rangeinit;
647
648 if(tlimit < facsafety*presafety)
649 tlimit = facsafety*presafety;
650
651 //lower limit for tlimit
652 if(tlimit < tlimitmin) tlimit = tlimitmin;
653
654 if(tPathLength > tlimit) tPathLength = tlimit;
655
656 }
657
658 // version similar to 7.1 (needed for some experiments)
659 else
660 {
661 if (stepStatus == fGeomBoundary)
662 {
663 if (currentRange > lambda0) tlimit = facrange*currentRange;
664 else tlimit = facrange*lambda0;
665
666 if(tlimit < tlimitmin) tlimit = tlimitmin;
667 if(tPathLength > tlimit) tPathLength = tlimit;
668 }
669 }
670 //G4cout << "tPathLength= " << tPathLength
671 // << " currentMinimalStep= " << currentMinimalStep << G4endl;
672 return ConvertTrueToGeom(tPathLength, currentMinimalStep);
673}
674
675//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
676
678{
679 firstStep = false;
680 lambdaeff = lambda0;
681 par1 = -1. ;
682 par2 = par3 = 0. ;
683
684 // do the true -> geom transformation
685 zPathLength = tPathLength;
686
687 // z = t for very small tPathLength
688 if(tPathLength < tlimitminfix) return zPathLength;
689
690 // this correction needed to run MSC with eIoni and eBrem inactivated
691 // and makes no harm for a normal run
692 if(tPathLength > currentRange)
693 tPathLength = currentRange ;
694
695 G4double tau = tPathLength/lambda0 ;
696
697 if ((tau <= tausmall) || insideskin) {
698 zPathLength = tPathLength;
699 if(zPathLength > lambda0) zPathLength = lambda0;
700 return zPathLength;
701 }
702
703 G4double zmean = tPathLength;
704 if (tPathLength < currentRange*dtrl) {
705 if(tau < taulim) zmean = tPathLength*(1.-0.5*tau) ;
706 else zmean = lambda0*(1.-exp(-tau));
707 } else if(currentKinEnergy < mass || tPathLength == currentRange) {
708 par1 = 1./currentRange ;
709 par2 = 1./(par1*lambda0) ;
710 par3 = 1.+par2 ;
711 if(tPathLength < currentRange)
712 zmean = (1.-exp(par3*log(1.-tPathLength/currentRange)))/(par1*par3) ;
713 else
714 zmean = 1./(par1*par3) ;
715 } else {
716 G4double T1 = GetEnergy(particle,currentRange-tPathLength,couple);
717 G4double lambda1 = GetTransportMeanFreePath(particle,T1);
718
719 par1 = (lambda0-lambda1)/(lambda0*tPathLength) ;
720 par2 = 1./(par1*lambda0) ;
721 par3 = 1.+par2 ;
722 zmean = (1.-exp(par3*log(lambda1/lambda0)))/(par1*par3) ;
723 }
724
725 zPathLength = zmean ;
726
727 // sample z
728 if(samplez)
729 {
730 const G4double ztmax = 0.99 ;
731 G4double zt = zmean/tPathLength ;
732
733 if (tPathLength > stepmin && zt < ztmax)
734 {
735 G4double u,cz1;
736 if(zt >= third)
737 {
738 G4double cz = 0.5*(3.*zt-1.)/(1.-zt) ;
739 cz1 = 1.+cz ;
740 G4double u0 = cz/cz1 ;
741 G4double grej ;
742 do {
743 u = exp(log(G4UniformRand())/cz1) ;
744 grej = exp(cz*log(u/u0))*(1.-u)/(1.-u0) ;
745 } while (grej < G4UniformRand()) ;
746 }
747 else
748 {
749 cz1 = 1./zt-1.;
750 u = 1.-exp(log(G4UniformRand())/cz1) ;
751 }
752 zPathLength = tPathLength*u ;
753 }
754 }
755
756 if(zPathLength > lambda0) zPathLength = lambda0;
757 //G4cout << "zPathLength= " << zPathLength << " lambda1= " << lambda0 << G4endl;
758 return zPathLength;
759}
760
761//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
762
764{
765 // step defined other than transportation
766 if(geomStepLength == zPathLength && tPathLength <= currentRange)
767 return tPathLength;
768
769 // t = z for very small step
770 zPathLength = geomStepLength;
771 tPathLength = geomStepLength;
772 if(geomStepLength < tlimitminfix) return tPathLength;
773
774 // recalculation
775 if((geomStepLength > lambda0*tausmall) && !insideskin)
776 {
777 if(par1 < 0.)
778 tPathLength = -lambda0*log(1.-geomStepLength/lambda0) ;
779 else
780 {
781 if(par1*par3*geomStepLength < 1.)
782 tPathLength = (1.-exp(log(1.-par1*par3*geomStepLength)/par3))/par1 ;
783 else
784 tPathLength = currentRange;
785 }
786 }
787 if(tPathLength < geomStepLength) tPathLength = geomStepLength;
788
789 //G4cout << "tPathLength= " << tPathLength << " step= " << geomStepLength << G4endl;
790
791 return tPathLength;
792}
793
794//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
795
797 G4double KineticEnergy)
798{
799 // for all particles take the width of the central part
800 // from a parametrization similar to the Highland formula
801 // ( Highland formula: Particle Physics Booklet, July 2002, eq. 26.10)
802 const G4double c_highland = 13.6*MeV ;
803 G4double betacp = sqrt(currentKinEnergy*(currentKinEnergy+2.*mass)*
804 KineticEnergy*(KineticEnergy+2.*mass)/
805 ((currentKinEnergy+mass)*(KineticEnergy+mass)));
806 y = trueStepLength/currentRadLength;
807 G4double theta0 = c_highland*std::abs(charge)*sqrt(y)/betacp;
808 y = log(y);
809 // correction factor from e- scattering data
810 G4double corr = coeffth1+coeffth2*y;
811
812 theta0 *= corr ;
813
814 return theta0;
815}
816
817//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
818
821 G4double safety)
822{
823 fDisplacement.set(0.0,0.0,0.0);
824 G4double kineticEnergy = currentKinEnergy;
825 if (tPathLength > currentRange*dtrl) {
826 kineticEnergy = GetEnergy(particle,currentRange-tPathLength,couple);
827 } else {
828 kineticEnergy -= tPathLength*GetDEDX(particle,currentKinEnergy,couple);
829 }
830 if((kineticEnergy <= eV) || (tPathLength <= tlimitminfix) ||
831 (tPathLength/tausmall < lambda0)) { return fDisplacement; }
832
833 G4double cth = SampleCosineTheta(tPathLength,kineticEnergy);
834
835 // protection against 'bad' cth values
836 if(std::fabs(cth) > 1.) { return fDisplacement; }
837
838 // extra protection agaist high energy particles backscattered
839 if(cth < 1.0 - 1000*tPathLength/lambda0 && kineticEnergy > 20*MeV) {
840 //G4cout << "Warning: large scattering E(MeV)= " << kineticEnergy
841 // << " s(mm)= " << tPathLength/mm
842 // << " 1-cosTheta= " << 1.0 - cth << G4endl;
843 // do Gaussian central scattering
844 if(kineticEnergy > GeV && cth < 0.0) {
846 ed << dynParticle->GetDefinition()->GetParticleName()
847 << " E(MeV)= " << kineticEnergy/MeV
848 << " Step(mm)= " << tPathLength/mm
849 << " in " << CurrentCouple()->GetMaterial()->GetName()
850 << " CosTheta= " << cth
851 << " is too big - the angle is resampled" << G4endl;
852 G4Exception("G4UrbanMscModel93::SampleScattering","em0004",
853 JustWarning, ed,"");
854 }
855 do {
856 cth = 1.0 + 2*log(G4UniformRand())*tPathLength/lambda0;
857 } while(cth < -1.0);
858 }
859
860 G4double sth = sqrt((1.0 - cth)*(1.0 + cth));
861 G4double phi = twopi*G4UniformRand();
862 G4double dirx = sth*cos(phi);
863 G4double diry = sth*sin(phi);
864
865 G4ThreeVector oldDirection = dynParticle->GetMomentumDirection();
866 G4ThreeVector newDirection(dirx,diry,cth);
867 newDirection.rotateUz(oldDirection);
868 fParticleChange->ProposeMomentumDirection(newDirection);
869
870 if (latDisplasment && safety > tlimitminfix) {
871
872 G4double r = SampleDisplacement();
873 /*
874 G4cout << "G4UrbanMscModel93::SampleSecondaries: e(MeV)= " << kineticEnergy
875 << " sinTheta= " << sth << " r(mm)= " << r
876 << " trueStep(mm)= " << tPathLength
877 << " geomStep(mm)= " << zPathLength
878 << G4endl;
879 */
880 if(r > 0.)
881 {
882 G4double latcorr = LatCorrelation();
883 if(latcorr > r) latcorr = r;
884
885 // sample direction of lateral displacement
886 // compute it from the lateral correlation
887 G4double Phi = 0.;
888 if(std::abs(r*sth) < latcorr)
889 Phi = twopi*G4UniformRand();
890 else
891 {
892 G4double psi = std::acos(latcorr/(r*sth));
893 if(G4UniformRand() < 0.5)
894 Phi = phi+psi;
895 else
896 Phi = phi-psi;
897 }
898
899 dirx = r*std::cos(Phi);
900 diry = r*std::sin(Phi);
901
902 fDisplacement.set(dirx,diry,0.0);
903 fDisplacement.rotateUz(oldDirection);
904 }
905 }
906 return fDisplacement;
907}
908
909//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
910
911G4double G4UrbanMscModel93::SampleCosineTheta(G4double trueStepLength,
912 G4double KineticEnergy)
913{
914 G4double cth = 1. ;
915 G4double tau = trueStepLength/lambda0 ;
916
917 Zeff = couple->GetMaterial()->GetTotNbOfElectPerVolume()/
919
920 if(Zold != Zeff)
921 UpdateCache();
922
923 if(insideskin)
924 {
925 //no scattering, single or plural scattering
926 G4double mean = trueStepLength/stepmin ;
927
928 G4int n = G4Poisson(mean);
929 if(n > 0)
930 {
931 //screening (Moliere-Bethe)
932 G4double mom2 = KineticEnergy*(2.*mass+KineticEnergy);
933 G4double beta2 = mom2/((KineticEnergy+mass)*(KineticEnergy+mass));
934 G4double ascr = scr1/mom2;
935 ascr *= 1.13+scr2/beta2;
936 G4double ascr1 = 1.+2.*ascr;
937 G4double bp1=ascr1+1.;
938 G4double bm1=ascr1-1.;
939
940 // single scattering from screened Rutherford x-section
941 G4double ct,st,phi;
942 G4double sx=0.,sy=0.,sz=0.;
943 for(G4int i=1; i<=n; i++)
944 {
945 ct = ascr1-bp1*bm1/(2.*G4UniformRand()+bm1);
946 if(ct < -1.) ct = -1.;
947 if(ct > 1.) ct = 1.;
948 st = sqrt(1.-ct*ct);
949 phi = twopi*G4UniformRand();
950 sx += st*cos(phi);
951 sy += st*sin(phi);
952 sz += ct;
953 }
954 cth = sz/sqrt(sx*sx+sy*sy+sz*sz);
955 }
956 }
957 else
958 {
959 if(trueStepLength >= currentRange*dtrl)
960 {
961 if(par1*trueStepLength < 1.)
962 tau = -par2*log(1.-par1*trueStepLength) ;
963 // for the case if ioni/brems are inactivated
964 // see the corresponding condition in ComputeGeomPathLength
965 else if(1.-KineticEnergy/currentKinEnergy > taulim)
966 tau = taubig ;
967 }
968 currentTau = tau ;
969 lambdaeff = trueStepLength/currentTau;
970 currentRadLength = couple->GetMaterial()->GetRadlen();
971
972 if (tau >= taubig) cth = -1.+2.*G4UniformRand();
973 else if (tau >= tausmall)
974 {
975 G4double xsi = 3.;
976 G4double x0 = 1.;
977 G4double a = 1., ea = 0., eaa = 1.;
978 G4double b=2.,b1=3.,bx=1.,eb1=3.,ebx=1.;
979 G4double prob = 1. , qprob = 1. ;
980 G4double xmean1 = 1., xmean2 = 0.;
981 G4double xmeanth = exp(-tau);
982 G4double x2meanth = (1.+2.*exp(-2.5*tau))/3.;
983
984 G4double relloss = 1.-KineticEnergy/currentKinEnergy;
985 if(relloss > rellossmax)
986 return SimpleScattering(xmeanth,x2meanth);
987
988 G4double theta0 = ComputeTheta0(trueStepLength,KineticEnergy);
989
990 // protection for very small angles
991 if(theta0*theta0 < tausmall) return cth;
992
993 if(theta0 > theta0max)
994 return SimpleScattering(xmeanth,x2meanth);
995 G4double sth = sin(0.5*theta0);
996 a = 0.25/(sth*sth);
997
998 ea = exp(-xsi);
999 eaa = 1.-ea ;
1000 xmean1 = 1.-(1.-(1.+xsi)*ea)/(a*eaa);
1001 x0 = 1.-xsi/a;
1002
1003 if(xmean1 <= 0.999*xmeanth)
1004 return SimpleScattering(xmeanth,x2meanth);
1005
1006 // from e- and muon scattering data
1007 G4double c = coeffc1+coeffc2*y; ;
1008
1009 if(abs(c-3.) < 0.001) c = 3.001;
1010 if(abs(c-2.) < 0.001) c = 2.001;
1011 if(abs(c-1.) < 0.001) c = 1.001;
1012
1013 G4double c1 = c-1.;
1014
1015 //from continuity of derivatives
1016 b = 1.+(c-xsi)/a;
1017
1018 b1 = b+1.;
1019 bx = c/a;
1020 eb1 = exp(c1*log(b1));
1021 ebx = exp(c1*log(bx));
1022
1023 xmean2 = (x0*eb1+ebx-(eb1*bx-b1*ebx)/(c-2.))/(eb1-ebx);
1024
1025 G4double f1x0 = a*ea/eaa;
1026 G4double f2x0 = c1*eb1/(bx*(eb1-ebx));
1027 prob = f2x0/(f1x0+f2x0);
1028
1029 qprob = xmeanth/(prob*xmean1+(1.-prob)*xmean2);
1030
1031 // sampling of costheta
1032 if(G4UniformRand() < qprob)
1033 {
1034 if(G4UniformRand() < prob)
1035 cth = 1.+log(ea+G4UniformRand()*eaa)/a ;
1036 else
1037 cth = b-b1*bx/exp(log(ebx+(eb1-ebx)*G4UniformRand())/c1) ;
1038 }
1039 else
1040 cth = -1.+2.*G4UniformRand();
1041 }
1042 }
1043 return cth ;
1044}
1045
1046//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1047
1048G4double G4UrbanMscModel93::SimpleScattering(G4double xmeanth,G4double x2meanth)
1049{
1050 // 'large angle scattering'
1051 // 2 model functions with correct xmean and x2mean
1052 G4double a = (2.*xmeanth+9.*x2meanth-3.)/(2.*xmeanth-3.*x2meanth+1.);
1053 G4double prob = (a+2.)*xmeanth/a;
1054
1055 // sampling
1056 G4double cth = 1.;
1057 if(G4UniformRand() < prob)
1058 cth = -1.+2.*exp(log(G4UniformRand())/(a+1.));
1059 else
1060 cth = -1.+2.*G4UniformRand();
1061 return cth;
1062}
1063
1064//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1065
1066G4double G4UrbanMscModel93::SampleDisplacement()
1067{
1068 // compute rmean = sqrt(<r**2>) from theory
1069 const G4double kappa = 2.5;
1070 const G4double kappapl1 = kappa+1.;
1071 const G4double kappami1 = kappa-1.;
1072 // Compute rmean = sqrt(<r**2>) from theory
1073 G4double rmean = 0.0;
1074 if ((currentTau >= tausmall) && !insideskin) {
1075 if (currentTau < taulim) {
1076 rmean = kappa*currentTau*currentTau*currentTau*
1077 (1.-kappapl1*currentTau*0.25)/6. ;
1078
1079 } else {
1080 G4double etau = 0.0;
1081 if (currentTau<taubig) etau = exp(-currentTau);
1082 rmean = -kappa*currentTau;
1083 rmean = -exp(rmean)/(kappa*kappami1);
1084 rmean += currentTau-kappapl1/kappa+kappa*etau/kappami1;
1085 }
1086 if (rmean>0.) rmean = 2.*lambdaeff*sqrt(rmean/3.0);
1087 else rmean = 0.;
1088 }
1089
1090 if(rmean == 0.) return rmean;
1091
1092 // protection against z > t ...........................
1093 G4double rmax = (tPathLength-zPathLength)*(tPathLength+zPathLength);
1094 if(rmax <= 0.)
1095 rmax = 0.;
1096 else
1097 rmax = sqrt(rmax);
1098
1099 if(rmean >= rmax) return rmax;
1100
1101 return rmean;
1102 // VI comment out for the time being
1103 /*
1104 //sample r (Gaussian distribution with a mean of rmean )
1105 G4double r = 0.;
1106 G4double sigma = min(rmean,rmax-rmean);
1107 sigma /= 3.;
1108 G4double rlow = rmean-3.*sigma;
1109 G4double rhigh = rmean+3.*sigma;
1110 do {
1111 r = G4RandGauss::shoot(rmean,sigma);
1112 } while ((r < rlow) || (r > rhigh));
1113
1114 return r;
1115 */
1116}
1117
1118//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1119
1120G4double G4UrbanMscModel93::LatCorrelation()
1121{
1122 const G4double kappa = 2.5;
1123 const G4double kappami1 = kappa-1.;
1124
1125 G4double latcorr = 0.;
1126 if((currentTau >= tausmall) && !insideskin)
1127 {
1128 if(currentTau < taulim)
1129 latcorr = lambdaeff*kappa*currentTau*currentTau*
1130 (1.-(kappa+1.)*currentTau/3.)/3.;
1131 else
1132 {
1133 G4double etau = 0.;
1134 if(currentTau < taubig) etau = exp(-currentTau);
1135 latcorr = -kappa*currentTau;
1136 latcorr = exp(latcorr)/kappami1;
1137 latcorr += 1.-kappa*etau/kappami1 ;
1138 latcorr *= 2.*lambdaeff/3. ;
1139 }
1140 }
1141
1142 return latcorr;
1143}
1144
1145//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
@ JustWarning
@ fUseSafety
@ fUseDistanceToBoundary
G4long G4Poisson(G4double mean)
Definition: G4Poisson.hh:50
G4StepStatus
Definition: G4StepStatus.hh:51
@ fGeomBoundary
Definition: G4StepStatus.hh:54
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
void set(double x, double y, double z)
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
static G4LossTableManager * Instance()
const G4Material * GetMaterial() const
G4double GetTotNbOfAtomsPerVolume() const
Definition: G4Material.hh:208
G4double GetTotNbOfElectPerVolume() const
Definition: G4Material.hh:211
G4double GetRadlen() const
Definition: G4Material.hh:219
const G4String & GetName() const
Definition: G4Material.hh:177
void ProposeMomentumDirection(const G4ThreeVector &Pfinal)
const G4String & GetParticleName() const
G4StepPoint * GetPreStepPoint() const
const G4DynamicParticle * GetDynamicParticle() const
const G4MaterialCutsCouple * GetMaterialCutsCouple() const
const G4Step * GetStep() const
void Initialise(const G4ParticleDefinition *, const G4DataVector &)
G4ThreeVector & SampleScattering(const G4DynamicParticle *, G4double safety)
void StartTracking(G4Track *)
G4double ComputeGeomPathLength(G4double truePathLength)
G4UrbanMscModel93(const G4String &nam="UrbanMsc93")
G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *particle, G4double KineticEnergy, G4double AtomicNumber, G4double AtomicWeight=0., G4double cut=0., G4double emax=DBL_MAX)
G4double ComputeTruePathLengthLimit(const G4Track &track, G4double &currentMinimalStep)
G4double ComputeTheta0(G4double truePathLength, G4double KineticEnergy)
G4double ComputeTrueStepLength(G4double geomStepLength)
void SetCurrentCouple(const G4MaterialCutsCouple *)
Definition: G4VEmModel.hh:370
const G4MaterialCutsCouple * CurrentCouple() const
Definition: G4VEmModel.hh:377
G4double dtrl
Definition: G4VMscModel.hh:180
G4double GetDEDX(const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple)
Definition: G4VMscModel.hh:273
G4double facrange
Definition: G4VMscModel.hh:176
G4double ComputeGeomLimit(const G4Track &, G4double &presafety, G4double limit)
Definition: G4VMscModel.hh:256
G4bool samplez
Definition: G4VMscModel.hh:188
G4double skin
Definition: G4VMscModel.hh:179
G4double GetTransportMeanFreePath(const G4ParticleDefinition *part, G4double kinEnergy)
Definition: G4VMscModel.hh:332
G4double GetEnergy(const G4ParticleDefinition *part, G4double range, const G4MaterialCutsCouple *couple)
Definition: G4VMscModel.hh:304
G4double GetRange(const G4ParticleDefinition *part, G4double kineticEnergy, const G4MaterialCutsCouple *couple)
Definition: G4VMscModel.hh:288
G4double ComputeSafety(const G4ThreeVector &position, G4double limit)
Definition: G4VMscModel.hh:238
G4MscStepLimitType steppingAlgorithm
Definition: G4VMscModel.hh:186
G4ParticleChangeForMSC * GetParticleChangeForMSC(const G4ParticleDefinition *p=0)
Definition: G4VMscModel.cc:89
G4double ConvertTrueToGeom(G4double &tLength, G4double &gLength)
Definition: G4VMscModel.hh:246
G4bool latDisplasment
Definition: G4VMscModel.hh:189
G4double facsafety
Definition: G4VMscModel.hh:178
G4ThreeVector fDisplacement
Definition: G4VMscModel.hh:185
G4double facgeom
Definition: G4VMscModel.hh:177
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
std::ostringstream G4ExceptionDescription
Definition: globals.hh:76