Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LEAntiSigmaPlusInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// Hadronic Process: AntiSigmaPlus Inelastic Process
29// J.L. Chuma, TRIUMF, 19-Feb-1997
30// Modified by J.L.Chuma 30-Apr-97: added originalTarget for CalculateMomenta
31
34#include "G4SystemOfUnits.hh"
35#include "Randomize.hh"
36
37void G4LEAntiSigmaPlusInelastic::ModelDescription(std::ostream& outFile) const
38{
39 outFile << "G4LEAntiSigmaPlusInelastic is one of the Low Energy\n"
40 << "Parameterized (LEP) models used to implement inelastic\n"
41 << "antiSigma+ scattering from nuclei. It is a re-engineered\n"
42 << "version of the GHEISHA code of H. Fesefeldt. It divides the\n"
43 << "initial collision products into backward- and forward-going\n"
44 << "clusters which are then decayed into final state hadrons. The\n"
45 << "model does not conserve energy on an event-by-event basis. It\n"
46 << "may be applied to antiSigma+ with initial energies between 0\n"
47 << "and 25 GeV.\n";
48}
49
50
53 G4Nucleus& targetNucleus)
54{
55 const G4HadProjectile *originalIncident = &aTrack;
56 if (originalIncident->GetKineticEnergy()<= 0.1*MeV) {
60 return &theParticleChange;
61 }
62
63 // create the target particle
64 G4DynamicParticle* originalTarget = targetNucleus.ReturnTargetParticle();
65
66 if (verboseLevel > 1) {
67 const G4Material *targetMaterial = aTrack.GetMaterial();
68 G4cout << "G4LEAntiSigmaPlusInelastic::ApplyYourself called" << G4endl;
69 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
70 G4cout << "target material = " << targetMaterial->GetName() << ", ";
71 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
72 << G4endl;
73 }
74
75 // Fermi motion and evaporation
76 // As of Geant3, the Fermi energy calculation had not been Done
77 G4double ek = originalIncident->GetKineticEnergy()/MeV;
78 G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
79 G4ReactionProduct modifiedOriginal;
80 modifiedOriginal = *originalIncident;
81
82 G4double tkin = targetNucleus.Cinema( ek );
83 ek += tkin;
84 modifiedOriginal.SetKineticEnergy( ek*MeV );
85 G4double et = ek + amas;
86 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
87 G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
88 if (pp > 0.0) {
89 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
90 modifiedOriginal.SetMomentum( momentum * (p/pp) );
91 }
92
93 // calculate black track energies
94 tkin = targetNucleus.EvaporationEffects(ek);
95 ek -= tkin;
96 modifiedOriginal.SetKineticEnergy( ek*MeV );
97 et = ek + amas;
98 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
99 pp = modifiedOriginal.GetMomentum().mag()/MeV;
100 if (pp > 0.0) {
101 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
102 modifiedOriginal.SetMomentum( momentum * (p/pp) );
103 }
104 G4ReactionProduct currentParticle = modifiedOriginal;
105 G4ReactionProduct targetParticle;
106 targetParticle = *originalTarget;
107 currentParticle.SetSide(1); // incident always goes in forward hemisphere
108 targetParticle.SetSide(-1); // target always goes in backward hemisphere
109 G4bool incidentHasChanged = false;
110 G4bool targetHasChanged = false;
111 G4bool quasiElastic = false;
112 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
113 G4int vecLen = 0;
114 vec.Initialize( 0 );
115
116 const G4double cutOff = 0.1;
117 const G4double anni = std::min( 1.3*currentParticle.GetTotalMomentum()/GeV, 0.4 );
118 if ((currentParticle.GetKineticEnergy()/MeV > cutOff) ||
119 (G4UniformRand() > anni) )
120 Cascade(vec, vecLen, originalIncident, currentParticle, targetParticle,
121 incidentHasChanged, targetHasChanged, quasiElastic);
122
123 CalculateMomenta(vec, vecLen, originalIncident, originalTarget,
124 modifiedOriginal, targetNucleus, currentParticle,
125 targetParticle, incidentHasChanged, targetHasChanged,
126 quasiElastic);
127
128 SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged);
129
130 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
131
132 delete originalTarget;
133 return &theParticleChange;
134}
135
136void G4LEAntiSigmaPlusInelastic::Cascade(
138 G4int& vecLen,
139 const G4HadProjectile *originalIncident,
140 G4ReactionProduct &currentParticle,
141 G4ReactionProduct &targetParticle,
142 G4bool &incidentHasChanged,
143 G4bool &targetHasChanged,
144 G4bool &quasiElastic )
145{
146 // derived from original FORTRAN code CASASP by H. Fesefeldt (13-Sep-1987)
147 //
148 // AntiSigmaPlus undergoes interaction with nucleon within a nucleus. Check if it is
149 // energetically possible to produce pions/kaons. In not, assume nuclear excitation
150 // occurs and input particle is degraded in energy. No other particles are produced.
151 // If reaction is possible, find the correct number of pions/protons/neutrons
152 // produced using an interpolation to multiplicity data. Replace some pions or
153 // protons/neutrons by kaons or strange baryons according to the average
154 // multiplicity per Inelastic reaction.
155 //
156 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
157 const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
158 const G4double pOriginal = originalIncident->GetTotalMomentum()/MeV;
159 const G4double targetMass = targetParticle.GetMass()/MeV;
160 G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
161 targetMass*targetMass +
162 2.0*targetMass*etOriginal );
163 G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
164
165 static G4bool first = true;
166 const G4int numMul = 1200;
167 const G4int numMulA = 400;
168 const G4int numSec = 60;
169 static G4double protmul[numMul], protnorm[numSec]; // proton constants
170 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
171 static G4double protmulA[numMulA], protnormA[numSec]; // proton constants
172 static G4double neutmulA[numMulA], neutnormA[numSec]; // neutron constants
173 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
174 G4int counter, nt=0, npos=0, nneg=0, nzero=0;
175 G4double test;
176 const G4double c = 1.25;
177 const G4double b[] = { 0.7, 0.7 };
178 if( first ) // compute normalization constants, this will only be Done once
179 {
180 first = false;
181 G4int i;
182 for( i=0; i<numMul; ++i )protmul[i] = 0.0;
183 for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
184 counter = -1;
185 for( npos=0; npos<(numSec/3); ++npos )
186 {
187 for( nneg=std::max(0,npos-1); nneg<=(npos+1); ++nneg )
188 {
189 for( nzero=0; nzero<numSec/3; ++nzero )
190 {
191 if( ++counter < numMul )
192 {
193 nt = npos+nneg+nzero;
194 if( nt>0 && nt<=numSec )
195 {
196 protmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[0],c);
197 protnorm[nt-1] += protmul[counter];
198 }
199 }
200 }
201 }
202 }
203 for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
204 for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
205 counter = -1;
206 for( npos=0; npos<numSec/3; ++npos )
207 {
208 for( nneg=npos; nneg<=(npos+2); ++nneg )
209 {
210 for( nzero=0; nzero<numSec/3; ++nzero )
211 {
212 if( ++counter < numMul )
213 {
214 nt = npos+nneg+nzero;
215 if( nt>0 && nt<=numSec )
216 {
217 neutmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[1],c);
218 neutnorm[nt-1] += neutmul[counter];
219 }
220 }
221 }
222 }
223 }
224 for( i=0; i<numSec; ++i )
225 {
226 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
227 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
228 }
229 //
230 // do the same for annihilation channels
231 //
232 for( i=0; i<numMulA; ++i )protmulA[i] = 0.0;
233 for( i=0; i<numSec; ++i )protnormA[i] = 0.0;
234 counter = -1;
235 for( npos=1; npos<(numSec/3); ++npos )
236 {
237 nneg = npos;
238 for( nzero=0; nzero<numSec/3; ++nzero )
239 {
240 if( ++counter < numMulA )
241 {
242 nt = npos+nneg+nzero;
243 if( nt>1 && nt<=numSec )
244 {
245 protmulA[counter] = Pmltpc(npos,nneg,nzero,nt,b[0],c);
246 protnormA[nt-1] += protmulA[counter];
247 }
248 }
249 }
250 }
251 for( i=0; i<numMulA; ++i )neutmulA[i] = 0.0;
252 for( i=0; i<numSec; ++i )neutnormA[i] = 0.0;
253 counter = -1;
254 for( npos=0; npos<numSec/3; ++npos )
255 {
256 nneg = npos+1;
257 for( nzero=0; nzero<numSec/3; ++nzero )
258 {
259 if( ++counter < numMulA )
260 {
261 nt = npos+nneg+nzero;
262 if( nt>1 && nt<=numSec )
263 {
264 neutmulA[counter] = Pmltpc(npos,nneg,nzero,nt,b[1],c);
265 neutnormA[nt-1] += neutmulA[counter];
266 }
267 }
268 }
269 }
270 for( i=0; i<numSec; ++i )
271 {
272 if( protnormA[i] > 0.0 )protnormA[i] = 1.0/protnormA[i];
273 if( neutnormA[i] > 0.0 )neutnormA[i] = 1.0/neutnormA[i];
274 }
275 } // end of initialization
276
277 const G4double expxu = 82.; // upper bound for arg. of exp
278 const G4double expxl = -expxu; // lower bound for arg. of exp
287 const G4double anhl[] = {1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,0.97,0.88,
288 0.85,0.81,0.75,0.64,0.64,0.55,0.55,0.45,0.47,0.40,
289 0.39,0.36,0.33,0.10,0.01};
290 G4int iplab = G4int( pOriginal/GeV*10.0 );
291 if( iplab > 9 )iplab = G4int( (pOriginal/GeV- 1.0)*5.0 ) + 10;
292 if( iplab > 14 )iplab = G4int( pOriginal/GeV- 2.0 ) + 15;
293 if( iplab > 22 )iplab = G4int( (pOriginal/GeV-10.0)/10.0 ) + 23;
294 if( iplab > 24 )iplab = 24;
295 if( G4UniformRand() > anhl[iplab] )
296 {
297 if( availableEnergy <= aPiPlus->GetPDGMass()/MeV )
298 {
299 quasiElastic = true;
300 return;
301 }
302 G4double n, anpn;
303 GetNormalizationConstant( availableEnergy, n, anpn );
304 G4double ran = G4UniformRand();
305 G4double dum, excs = 0.0;
306 if( targetParticle.GetDefinition() == aProton )
307 {
308 counter = -1;
309 for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
310 {
311 for( nneg=std::max(0,npos-1); nneg<=(npos+1) && ran>=excs; ++nneg )
312 {
313 for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
314 {
315 if( ++counter < numMul )
316 {
317 nt = npos+nneg+nzero;
318 if( (nt>0) && (nt<=numSec) )
319 {
320 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
321 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
322 if( std::fabs(dum) < 1.0 )
323 {
324 if( test >= 1.0e-10 )excs += dum*test;
325 }
326 else
327 excs += dum*test;
328 }
329 }
330 }
331 }
332 }
333 if( ran >= excs ) // 3 previous loops continued to the end
334 {
335 quasiElastic = true;
336 return;
337 }
338 npos--; nneg--; nzero--;
339 G4int ncht = std::min( 3, std::max( 1, npos-nneg+2 ) );
340 switch( ncht )
341 {
342 case 1:
343 if( G4UniformRand() < 0.5 )
344 currentParticle.SetDefinitionAndUpdateE( anAntiLambda );
345 else
346 currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
347 incidentHasChanged = true;
348 break;
349 case 2:
350 if( G4UniformRand() >= 0.5 )
351 {
352 if( G4UniformRand() < 0.5 )
353 currentParticle.SetDefinitionAndUpdateE( anAntiLambda );
354 else
355 currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
356 incidentHasChanged = true;
357 }
358 targetParticle.SetDefinitionAndUpdateE( aNeutron );
359 targetHasChanged = true;
360 break;
361 case 3:
362 targetParticle.SetDefinitionAndUpdateE( aNeutron );
363 targetHasChanged = true;
364 break;
365 }
366 }
367 else // target must be a neutron
368 {
369 counter = -1;
370 for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
371 {
372 for( nneg=npos; nneg<=(npos+2) && ran>=excs; ++nneg )
373 {
374 for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
375 {
376 if( ++counter < numMul )
377 {
378 nt = npos+nneg+nzero;
379 if( (nt>0) && (nt<=numSec) )
380 {
381 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
382 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
383 if( std::fabs(dum) < 1.0 )
384 {
385 if( test >= 1.0e-10 )excs += dum*test;
386 }
387 else
388 excs += dum*test;
389 }
390 }
391 }
392 }
393 }
394 if( ran >= excs ) // 3 previous loops continued to the end
395 {
396 quasiElastic = true;
397 return;
398 }
399 npos--; nneg--; nzero--;
400 G4int ncht = std::min( 3, std::max( 1, npos-nneg+3 ) );
401 switch( ncht )
402 {
403 case 1:
404 if( G4UniformRand() < 0.5 )
405 currentParticle.SetDefinitionAndUpdateE( anAntiLambda );
406 else
407 currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
408 incidentHasChanged = true;
409 targetParticle.SetDefinitionAndUpdateE( aProton );
410 targetHasChanged = true;
411 break;
412 case 2:
413 if( G4UniformRand() < 0.5 )
414 {
415 if( G4UniformRand() < 0.5 )
416 {
417 currentParticle.SetDefinitionAndUpdateE( anAntiLambda );
418 incidentHasChanged = true;
419 }
420 else
421 {
422 targetParticle.SetDefinitionAndUpdateE( aProton );
423 targetHasChanged = true;
424 }
425 }
426 else
427 {
428 if( G4UniformRand() < 0.5 )
429 {
430 currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
431 incidentHasChanged = true;
432 }
433 else
434 {
435 targetParticle.SetDefinitionAndUpdateE( aProton );
436 targetHasChanged = true;
437 }
438 }
439 break;
440 case 3:
441 break;
442 }
443 }
444 }
445 else // random number <= anhl[iplab]
446 {
447 if( centerofmassEnergy <= aPiPlus->GetPDGMass()/MeV+aKaonPlus->GetPDGMass()/MeV )
448 {
449 quasiElastic = true;
450 return;
451 }
452 G4double n, anpn;
453 GetNormalizationConstant( -centerofmassEnergy, n, anpn );
454 G4double ran = G4UniformRand();
455 G4double dum, excs = 0.0;
456 if( targetParticle.GetDefinition() == aProton )
457 {
458 counter = -1;
459 for( npos=1; npos<numSec/3 && ran>=excs; ++npos )
460 {
461 nneg = npos;
462 for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
463 {
464 if( ++counter < numMulA )
465 {
466 nt = npos+nneg+nzero;
467 if( nt>1 && nt<=numSec )
468 {
469 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
470 dum = (pi/anpn)*nt*protmulA[counter]*protnormA[nt-1]/(2.0*n*n);
471 if( std::fabs(dum) < 1.0 )
472 {
473 if( test >= 1.0e-10 )excs += dum*test;
474 }
475 else
476 excs += dum*test;
477 }
478 }
479 }
480 }
481 if( ran >= excs ) // 3 previous loops continued to the end
482 {
483 quasiElastic = true;
484 return;
485 }
486 npos--; nzero--;
487 }
488 else // target must be a neutron
489 {
490 counter = -1;
491 for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
492 {
493 nneg = npos+1;
494 for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
495 {
496 if( ++counter < numMulA )
497 {
498 nt = npos+nneg+nzero;
499 if( nt>1 && nt<=numSec )
500 {
501 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
502 dum = (pi/anpn)*nt*neutmulA[counter]*neutnormA[nt-1]/(2.0*n*n);
503 if( std::fabs(dum) < 1.0 )
504 {
505 if( test >= 1.0e-10 )excs += dum*test;
506 }
507 else
508 excs += dum*test;
509 }
510 }
511 }
512 }
513 if( ran >= excs ) // 3 previous loops continued to the end
514 {
515 quasiElastic = true;
516 return;
517 }
518 npos--; nzero--;
519 }
520 if( nzero > 0 )
521 {
522 if( nneg > 0 )
523 {
524 if( G4UniformRand() < 0.5 )
525 {
526 vec.Initialize( 1 );
528 p->SetDefinition( aKaonMinus );
529 (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
530 vec.SetElement( vecLen++, p );
531 --nneg;
532 }
533 else
534 {
535 vec.Initialize( 1 );
537 p->SetDefinition( aKaonZL );
538 (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
539 vec.SetElement( vecLen++, p );
540 --nzero;
541 }
542 }
543 else // nneg == 0
544 {
545 vec.Initialize( 1 );
547 p->SetDefinition( aKaonZL );
548 (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
549 vec.SetElement( vecLen++, p );
550 --nzero;
551 }
552 }
553 else // nzero == 0
554 {
555 if( nneg > 0 )
556 {
557 vec.Initialize( 1 );
559 p->SetDefinition( aKaonMinus );
560 (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
561 vec.SetElement( vecLen++, p );
562 --nneg;
563 }
564 }
565 currentParticle.SetMass( 0.0 );
566 targetParticle.SetMass( 0.0 );
567 }
568 SetUpPions( npos, nneg, nzero, vec, vecLen );
569 return;
570}
571
572 /* end of file */
573
@ isAlive
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector unit() const
double mag() const
Hep3Vector vect() const
static G4AntiLambda * AntiLambda()
static G4AntiSigmaZero * AntiSigmaZero()
G4ParticleDefinition * GetDefinition() const
void SetElement(G4int anIndex, Type *anElement)
Definition: G4FastVector.hh:76
void Initialize(G4int items)
Definition: G4FastVector.hh:63
void SetStatusChange(G4HadFinalStateStatus aS)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
G4double GetTotalMomentum() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen)
void CalculateMomenta(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void DoIsotopeCounting(const G4HadProjectile *theProjectile, const G4Nucleus &aNucleus)
void SetUpChange(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:113
static G4KaonPlus * KaonPlus()
Definition: G4KaonPlus.cc:113
static G4KaonZeroLong * KaonZeroLong()
virtual void ModelDescription(std::ostream &outFile) const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
const G4String & GetName() const
Definition: G4Material.hh:177
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
const G4String & GetParticleName() const
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static G4Proton * Proton()
Definition: G4Proton.cc:93
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetTotalMomentum() const
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4ParticleDefinition * GetDefinition() const
void SetDefinition(G4ParticleDefinition *aParticleDefinition)
G4double GetMass() const
void SetMass(const G4double mas)
const G4double pi