Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4EmCaptureCascade Class Reference

#include <G4EmCaptureCascade.hh>

+ Inheritance diagram for G4EmCaptureCascade:

Public Member Functions

 G4EmCaptureCascade ()
 
 ~G4EmCaptureCascade ()
 
G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
void ModelDescription (std::ostream &outFile) const
 
- Public Member Functions inherited from G4HadronicInteraction
 G4HadronicInteraction (const G4String &modelName="HadronicModel")
 
virtual ~G4HadronicInteraction ()
 
virtual G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)=0
 
virtual G4double SampleInvariantT (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
virtual G4bool IsApplicable (const G4HadProjectile &, G4Nucleus &)
 
G4double GetMinEnergy () const
 
G4double GetMinEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMinEnergy (G4double anEnergy)
 
void SetMinEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMinEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4double GetMaxEnergy () const
 
G4double GetMaxEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMaxEnergy (const G4double anEnergy)
 
void SetMaxEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMaxEnergy (G4double anEnergy, const G4Material *aMaterial)
 
const G4HadronicInteractionGetMyPointer () const
 
G4int GetVerboseLevel () const
 
void SetVerboseLevel (G4int value)
 
const G4StringGetModelName () const
 
void DeActivateFor (const G4Material *aMaterial)
 
void ActivateFor (const G4Material *aMaterial)
 
void DeActivateFor (const G4Element *anElement)
 
void ActivateFor (const G4Element *anElement)
 
G4bool IsBlocked (const G4Material *aMaterial) const
 
G4bool IsBlocked (const G4Element *anElement) const
 
void SetRecoilEnergyThreshold (G4double val)
 
G4double GetRecoilEnergyThreshold () const
 
G4bool operator== (const G4HadronicInteraction &right) const
 
G4bool operator!= (const G4HadronicInteraction &right) const
 
virtual const std::pair< G4double, G4doubleGetFatalEnergyCheckLevels () const
 
virtual std::pair< G4double, G4doubleGetEnergyMomentumCheckLevels () const
 
void SetEnergyMomentumCheckLevels (G4double relativeLevel, G4double absoluteLevel)
 
virtual void ModelDescription (std::ostream &outFile) const
 

Additional Inherited Members

- Protected Member Functions inherited from G4HadronicInteraction
void SetModelName (const G4String &nam)
 
G4bool IsBlocked () const
 
void Block ()
 
- Protected Attributes inherited from G4HadronicInteraction
G4HadFinalState theParticleChange
 
G4int verboseLevel
 
G4double theMinEnergy
 
G4double theMaxEnergy
 
G4bool isBlocked
 

Detailed Description

Definition at line 67 of file G4EmCaptureCascade.hh.

Constructor & Destructor Documentation

◆ G4EmCaptureCascade()

G4EmCaptureCascade::G4EmCaptureCascade ( )

Definition at line 56 of file G4EmCaptureCascade.cc.

57 : G4HadronicInteraction("emCaptureCascade")
58{
59 theElectron = G4Electron::Electron();
60 theGamma = G4Gamma::Gamma();
62 fTime = 0.0;
63
64 // Calculate the Energy of K Mesoatom Level for this Element using
65 // the Energy of Hydrogen Atom taken into account finite size of the
66 // nucleus
67 const G4int nlevels = 28;
68 const G4int listK[nlevels] = {
69 1, 2, 4, 6, 8, 11, 14, 17, 18, 21, 24,
70 26, 29, 32, 38, 40, 41, 44, 49, 53, 55,
71 60, 65, 70, 75, 81, 85, 92};
72 const G4double listKEnergy[nlevels] = {
73 0.00275, 0.011, 0.043, 0.098, 0.173, 0.326,
74 0.524, 0.765, 0.853, 1.146, 1.472,
75 1.708, 2.081, 2.475, 3.323, 3.627,
76 3.779, 4.237, 5.016, 5.647, 5.966,
77 6.793, 7.602, 8.421, 9.249, 10.222,
78 10.923,11.984};
79
80 fKLevelEnergy[0] = 0.0;
81 fKLevelEnergy[1] = listKEnergy[0];
82 G4int idx = 1;
83 for(G4int i=1; i<nlevels; ++i) {
84 G4int z1 = listK[idx];
85 G4int z2 = listK[i];
86 if(z1+1 < z2) {
87 G4double dz = G4double(z2 - z1);
88 G4double y1 = listKEnergy[idx]/G4double(z1*z1);
89 G4double y2 = listKEnergy[i]/G4double(z2*z2);
90 for(G4int z=z1+1; z<z2; ++z) {
91 fKLevelEnergy[z] = (y1 + (y2 - y1)*(z - z1)/dz)*z*z;
92 }
93 }
94 fKLevelEnergy[z2] = listKEnergy[i];
95 idx = i;
96 }
97}
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
static G4Electron * Electron()
Definition: G4Electron.cc:94
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
static G4MuonMinus * MuonMinus()
Definition: G4MuonMinus.cc:100

◆ ~G4EmCaptureCascade()

G4EmCaptureCascade::~G4EmCaptureCascade ( )

Definition at line 101 of file G4EmCaptureCascade.cc.

102{}

Member Function Documentation

◆ ApplyYourself()

G4HadFinalState * G4EmCaptureCascade::ApplyYourself ( const G4HadProjectile aTrack,
G4Nucleus targetNucleus 
)
virtual

Implements G4HadronicInteraction.

Definition at line 107 of file G4EmCaptureCascade.cc.

109{
110 result.Clear();
111 result.SetStatusChange(isAlive);
112 fTime = projectile.GetGlobalTime();
113
114 G4int Z = targetNucleus.GetZ_asInt();
115 G4int A = targetNucleus.GetA_asInt();
117 G4double mass = fMuMass * massA / (fMuMass + massA) ;
118 G4double e = 13.6 * eV * Z * Z * mass/ electron_mass_c2;
119
120 // precise corrections of energy only for K-shell
121 fLevelEnergy[0] = fKLevelEnergy[Z];
122 for( G4int i = 2; i < 15; ++i) {
123 fLevelEnergy[i-1] = e/G4double(i*i);
124 }
125
126 G4int nElec = G4int(Z);
127 G4int nAuger = 1;
128 G4int nLevel = 13;
129 G4double pGamma = Z*Z*Z*Z;
130
131 // Capture on 14-th level
132 G4double edep = fLevelEnergy[13];
133 AddNewParticle(theElectron,edep);
134 G4double deltaE;
135
136 // Emit new photon or electron
137 // Simplified model for probabilities
138 // N.C.Mukhopadhyay Phy. Rep. 30 (1977) 1.
139 do {
140
141 // case of Auger electrons
142 if((nAuger < nElec) && ((pGamma + 10000.0) * G4UniformRand() < 10000.0) ) {
143 ++nAuger;
144 deltaE = fLevelEnergy[nLevel-1] - fLevelEnergy[nLevel];
145 --nLevel;
146 AddNewParticle(theElectron, deltaE);
147
148 } else {
149
150 // Case of photon cascade, probabilities from
151 // C.S.Wu and L.Wilets, Ann. Rev. Nuclear Sci. 19 (1969) 527.
152
153 G4double var = (10.0 + G4double(nLevel - 1) ) * G4UniformRand();
154 G4int iLevel = nLevel - 1 ;
155 if(var > 10.0) iLevel -= G4int(var-10.0) + 1;
156 if( iLevel < 0 ) iLevel = 0;
157 deltaE = fLevelEnergy[iLevel] - fLevelEnergy[nLevel];
158 nLevel = iLevel;
159 AddNewParticle(theGamma, deltaE);
160 }
161 edep += deltaE;
162
163 } while( nLevel > 0 );
164
165 result.SetLocalEnergyDeposit(edep);
166 return &result;
167}
@ isAlive
#define G4UniformRand()
Definition: Randomize.hh:53
void SetStatusChange(G4HadFinalStateStatus aS)
void SetLocalEnergyDeposit(G4double aE)
static G4double GetNuclearMass(const G4double A, const G4double Z)
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115

◆ ModelDescription()

void G4EmCaptureCascade::ModelDescription ( std::ostream &  outFile) const
virtual

Reimplemented from G4HadronicInteraction.

Definition at line 171 of file G4EmCaptureCascade.cc.

172{
173 outFile << "Simulation of electromagnetic cascade from capture level"
174 << " to K-shell of the mesonic atom\n."
175 << "Probabilities of gamma and Auger transitions from\n"
176 << " N.C.Mukhopadhyay Phys. Rep. 30 (1977) 1.\n";
177}

The documentation for this class was generated from the following files: