Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LEAntiXiZeroInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// Hadronic Process: AntiXiZero Inelastic Process
29// J.L. Chuma, TRIUMF, 20-Feb-1997
30// Modified by J.L.Chuma 30-Apr-97: added originalTarget for CalculateMomenta
31//
32// NOTE: The FORTRAN version of the cascade, CASAXO, simply called the
33// routine for the XiZero particle. Hence, the ApplyYourself function
34// below is just a copy of the ApplyYourself from the XiZero particle.
35
38#include "G4SystemOfUnits.hh"
39#include "Randomize.hh"
40
41void G4LEAntiXiZeroInelastic::ModelDescription(std::ostream& outFile) const
42{
43 outFile << "G4LEAntiXiZeroInelastic is one of the Low Energy Parameterized\n"
44 << "(LEP) models used to implement inelastic antiXi0 scattering\n"
45 << "from nuclei. It is a re-engineered version of the GHEISHA\n"
46 << "code of H. Fesefeldt. It divides the initial collision\n"
47 << "products into backward- and forward-going clusters which are\n"
48 << "then decayed into final state hadrons. The model does not\n"
49 << "conserve energy on an event-by-event basis. It may be\n"
50 << "applied to antiXi0 with initial energies between 0 and 25\n"
51 << "GeV.\n";
52}
53
56 G4Nucleus& targetNucleus)
57{
58 const G4HadProjectile *originalIncident = &aTrack;
59
60 // create the target particle
61 G4DynamicParticle* originalTarget = targetNucleus.ReturnTargetParticle();
62
63 if (verboseLevel > 1) {
64 const G4Material *targetMaterial = aTrack.GetMaterial();
65 G4cout << "G4LEAntiXiZeroInelastic::ApplyYourself called" << G4endl;
66 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
67 G4cout << "target material = " << targetMaterial->GetName() << ", ";
68 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
69 << G4endl;
70 }
71
72 // Fermi motion and evaporation
73 // As of Geant3, the Fermi energy calculation had not been Done
74 G4double ek = originalIncident->GetKineticEnergy()/MeV;
75 G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
76 G4ReactionProduct modifiedOriginal;
77 modifiedOriginal = *originalIncident;
78
79 G4double tkin = targetNucleus.Cinema( ek );
80 ek += tkin;
81 modifiedOriginal.SetKineticEnergy( ek*MeV );
82 G4double et = ek + amas;
83 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
84 G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
85 if (pp > 0.0) {
86 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
87 modifiedOriginal.SetMomentum( momentum * (p/pp) );
88 }
89
90 // calculate black track energies
91 tkin = targetNucleus.EvaporationEffects( ek );
92 ek -= tkin;
93 modifiedOriginal.SetKineticEnergy( ek*MeV );
94 et = ek + amas;
95 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
96 pp = modifiedOriginal.GetMomentum().mag()/MeV;
97 if (pp > 0.0) {
98 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
99 modifiedOriginal.SetMomentum( momentum * (p/pp) );
100 }
101 G4ReactionProduct currentParticle = modifiedOriginal;
102 G4ReactionProduct targetParticle;
103 targetParticle = *originalTarget;
104 currentParticle.SetSide(1); // incident always goes in forward hemisphere
105 targetParticle.SetSide(-1); // target always goes in backward hemisphere
106 G4bool incidentHasChanged = false;
107 G4bool targetHasChanged = false;
108 G4bool quasiElastic = false;
109 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
110 G4int vecLen = 0;
111 vec.Initialize(0);
112
113 const G4double cutOff = 0.1;
114 const G4double anni = std::min( 1.3*currentParticle.GetTotalMomentum()/GeV, 0.4 );
115 if ((currentParticle.GetKineticEnergy()/MeV > cutOff) ||
116 (G4UniformRand() > anni) )
117 Cascade(vec, vecLen, originalIncident, currentParticle, targetParticle,
118 incidentHasChanged, targetHasChanged, quasiElastic);
119
120 CalculateMomenta(vec, vecLen, originalIncident, originalTarget,
121 modifiedOriginal, targetNucleus, currentParticle,
122 targetParticle, incidentHasChanged, targetHasChanged,
123 quasiElastic);
124
125 SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged);
126
127 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
128
129 delete originalTarget;
130 return &theParticleChange;
131}
132
133
134void G4LEAntiXiZeroInelastic::Cascade(
136 G4int& vecLen,
137 const G4HadProjectile *originalIncident,
138 G4ReactionProduct &currentParticle,
139 G4ReactionProduct &targetParticle,
140 G4bool &incidentHasChanged,
141 G4bool &targetHasChanged,
142 G4bool &quasiElastic)
143{
144 // derived from original FORTRAN code CASAX0 by H. Fesefeldt (20-Jan-1989)
145 // which is just a copy of CASX0 (cascade for Xi0)
146 //
147 // AntiXiZero undergoes interaction with nucleon within a nucleus. Check if it is
148 // energetically possible to produce pions/kaons. In not, assume nuclear excitation
149 // occurs and input particle is degraded in energy. No other particles are produced.
150 // If reaction is possible, find the correct number of pions/protons/neutrons
151 // produced using an interpolation to multiplicity data. Replace some pions or
152 // protons/neutrons by kaons or strange baryons according to the average
153 // multiplicity per inelastic reaction.
154 //
155 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
156 const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
157 const G4double targetMass = targetParticle.GetMass()/MeV;
158 G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
159 targetMass*targetMass +
160 2.0*targetMass*etOriginal );
161 G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
162 if( availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass()/MeV )
163 {
164 quasiElastic = true;
165 return;
166 }
167 static G4bool first = true;
168 const G4int numMul = 1200;
169 const G4int numSec = 60;
170 static G4double protmul[numMul], protnorm[numSec]; // proton constants
171 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
172 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
173 G4int counter, nt=0, npos=0, nneg=0, nzero=0;
174 G4double test;
175 const G4double c = 1.25;
176 const G4double b[] = { 0.7, 0.7 };
177 if( first ) // compute normalization constants, this will only be Done once
178 {
179 first = false;
180 G4int i;
181 for( i=0; i<numMul; ++i )protmul[i] = 0.0;
182 for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
183 counter = -1;
184 for( npos=0; npos<(numSec/3); ++npos )
185 {
186 for( nneg=std::max(0,npos-2); nneg<=(npos+1); ++nneg )
187 {
188 for( nzero=0; nzero<numSec/3; ++nzero )
189 {
190 if( ++counter < numMul )
191 {
192 nt = npos+nneg+nzero;
193 if( nt>0 && nt<=numSec )
194 {
195 protmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[0],c);
196 protnorm[nt-1] += protmul[counter];
197 }
198 }
199 }
200 }
201 }
202 for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
203 for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
204 counter = -1;
205 for( npos=0; npos<numSec/3; ++npos )
206 {
207 for( nneg=std::max(0,npos-1); nneg<=(npos+2); ++nneg )
208 {
209 for( nzero=0; nzero<numSec/3; ++nzero )
210 {
211 if( ++counter < numMul )
212 {
213 nt = npos+nneg+nzero;
214 if( nt>0 && nt<=numSec )
215 {
216 neutmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[1],c);
217 neutnorm[nt-1] += neutmul[counter];
218 }
219 }
220 }
221 }
222 }
223 for( i=0; i<numSec; ++i )
224 {
225 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
226 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
227 }
228 } // end of initialization
229
230 const G4double expxu = 82.; // upper bound for arg. of exp
231 const G4double expxl = -expxu; // lower bound for arg. of exp
237 //
238 // energetically possible to produce pion(s) --> inelastic scattering
239 //
240 G4double n, anpn;
241 GetNormalizationConstant( availableEnergy, n, anpn );
242 G4double ran = G4UniformRand();
243 G4double dum, excs = 0.0;
244 if( targetParticle.GetDefinition() == aProton )
245 {
246 counter = -1;
247 for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
248 {
249 for( nneg=std::max(0,npos-2); nneg<=(npos+1) && ran>=excs; ++nneg )
250 {
251 for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
252 {
253 if( ++counter < numMul )
254 {
255 nt = npos+nneg+nzero;
256 if( nt>0 && nt<=numSec )
257 {
258 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
259 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
260 if( std::fabs(dum) < 1.0 )
261 {
262 if( test >= 1.0e-10 )excs += dum*test;
263 }
264 else
265 excs += dum*test;
266 }
267 }
268 }
269 }
270 }
271 if( ran >= excs ) // 3 previous loops continued to the end
272 {
273 quasiElastic = true;
274 return;
275 }
276 npos--; nneg--; nzero--;
277 //
278 // number of secondary mesons determined by kno distribution
279 // check for total charge of final state mesons to determine
280 // the kind of baryons to be produced, taking into account
281 // charge and strangeness conservation
282 //
283 if( npos < nneg+1 )
284 {
285 if( npos != nneg ) // charge mismatch
286 {
287 currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
288 incidentHasChanged = true;
289 //
290 // correct the strangeness by replacing a pi- by a kaon-
291 //
292 vec.Initialize( 1 );
294 p->SetDefinition( aKaonMinus );
295 (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
296 vec.SetElement( vecLen++, p );
297 --nneg;
298 }
299 }
300 else if( npos == nneg+1 )
301 {
302 if( G4UniformRand() < 0.5 )
303 {
304 targetParticle.SetDefinitionAndUpdateE( aNeutron );
305 targetHasChanged = true;
306 }
307 else
308 {
309 currentParticle.SetDefinitionAndUpdateE( aXiMinus );
310 incidentHasChanged = true;
311 }
312 }
313 else
314 {
315 currentParticle.SetDefinitionAndUpdateE( aXiMinus );
316 incidentHasChanged = true;
317 targetParticle.SetDefinitionAndUpdateE( aNeutron );
318 targetHasChanged = true;
319 }
320 }
321 else // target must be a neutron
322 {
323 counter = -1;
324 for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
325 {
326 for( nneg=std::max(0,npos-1); nneg<=(npos+2) && ran>=excs; ++nneg )
327 {
328 for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
329 {
330 if( ++counter < numMul )
331 {
332 nt = npos+nneg+nzero;
333 if( nt>0 && nt<=numSec )
334 {
335 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
336 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
337 if( std::fabs(dum) < 1.0 )
338 {
339 if( test >= 1.0e-10 )excs += dum*test;
340 }
341 else
342 excs += dum*test;
343 }
344 }
345 }
346 }
347 }
348 if( ran >= excs ) // 3 previous loops continued to the end
349 {
350 quasiElastic = true;
351 return;
352 }
353 npos--; nneg--; nzero--;
354 if( npos < nneg )
355 {
356 if( npos+1 == nneg )
357 {
358 targetParticle.SetDefinitionAndUpdateE( aProton );
359 targetHasChanged = true;
360 }
361 else // charge mismatch
362 {
363 currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
364 incidentHasChanged = true;
365 targetParticle.SetDefinitionAndUpdateE( aProton );
366 targetHasChanged = true;
367 //
368 // correct the strangeness by replacing a pi- by a kaon-
369 //
370 vec.Initialize( 1 );
372 p->SetDefinition( aKaonMinus );
373 (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
374 vec.SetElement( vecLen++, p );
375 --nneg;
376 }
377 }
378 else if( npos == nneg )
379 {
380 if( G4UniformRand() >= 0.5 )
381 {
382 currentParticle.SetDefinitionAndUpdateE( aXiMinus );
383 incidentHasChanged = true;
384 targetParticle.SetDefinitionAndUpdateE( aProton );
385 targetHasChanged = true;
386 }
387 }
388 else
389 {
390 currentParticle.SetDefinitionAndUpdateE( aXiMinus );
391 incidentHasChanged = true;
392 }
393 }
394 SetUpPions( npos, nneg, nzero, vec, vecLen );
395 return;
396}
397
398 /* end of file */
399
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
double mag() const
G4ParticleDefinition * GetDefinition() const
void SetElement(G4int anIndex, Type *anElement)
Definition: G4FastVector.hh:76
void Initialize(G4int items)
Definition: G4FastVector.hh:63
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double GetTotalEnergy() const
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen)
void CalculateMomenta(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void DoIsotopeCounting(const G4HadProjectile *theProjectile, const G4Nucleus &aNucleus)
void SetUpChange(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:113
virtual void ModelDescription(std::ostream &outFile) const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
const G4String & GetName() const
Definition: G4Material.hh:177
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
const G4String & GetParticleName() const
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static G4Proton * Proton()
Definition: G4Proton.cc:93
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetTotalMomentum() const
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4ParticleDefinition * GetDefinition() const
void SetDefinition(G4ParticleDefinition *aParticleDefinition)
G4double GetMass() const
static G4SigmaPlus * SigmaPlus()
Definition: G4SigmaPlus.cc:108
static G4XiMinus * XiMinus()
Definition: G4XiMinus.cc:106
const G4double pi