Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4HEAntiOmegaMinusInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28
29// G4 Process: Gheisha High Energy Collision model.
30// This includes the high energy cascading model, the two-body-resonance model
31// and the low energy two-body model. Not included is the low energy stuff
32// like nuclear reactions, nuclear fission without any cascading and all
33// processes for particles at rest.
34// First work done by J.L.Chuma and F.W.Jones, TRIUMF, June 96.
35// H. Fesefeldt, RWTH-Aachen, 23-October-1996
36
38#include "globals.hh"
39#include "G4ios.hh"
41#include "G4SystemOfUnits.hh"
42
43void G4HEAntiOmegaMinusInelastic::ModelDescription(std::ostream& outFile) const
44{
45 outFile << "G4HEAntiOmegaMinusInelastic is one of the High Energy\n"
46 << "Parameterized (HEP) models used to implement inelastic\n"
47 << "anti-Omega- scattering from nuclei. It is a re-engineered\n"
48 << "version of the GHEISHA code of H. Fesefeldt. It divides the\n"
49 << "initial collision products into backward- and forward-going\n"
50 << "clusters which are then decayed into final state hadrons.\n"
51 << "The model does not conserve energy on an event-by-event\n"
52 << "basis. It may be applied to anti-Omega- with initial\n"
53 << "energies above 20 GeV.\n";
54}
55
56
59 G4Nucleus& targetNucleus)
60{
61 G4HEVector* pv = new G4HEVector[MAXPART];
62 const G4HadProjectile* aParticle = &aTrack;
63 const G4double atomicWeight = targetNucleus.GetA_asInt();
64 const G4double atomicNumber = targetNucleus.GetZ_asInt();
65 G4HEVector incidentParticle(aParticle);
66
67 G4int incidentCode = incidentParticle.getCode();
68 G4double incidentMass = incidentParticle.getMass();
69 G4double incidentTotalEnergy = incidentParticle.getEnergy();
70
71 // G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
72 // DHW 19 May 2011: variable set but not used
73
74 G4double incidentKineticEnergy = incidentTotalEnergy - incidentMass;
75
76 if (incidentKineticEnergy < 1.)
77 G4cout << "GHEAntiOmegaMinusInelastic: incident energy < 1 GeV" << G4endl;
78
79 if (verboseLevel > 1) {
80 G4cout << "G4HEAntiOmegaMinusInelastic::ApplyYourself" << G4endl;
81 G4cout << "incident particle " << incidentParticle.getName()
82 << "mass " << incidentMass
83 << "kinetic energy " << incidentKineticEnergy
84 << G4endl;
85 G4cout << "target material with (A,Z) = ("
86 << atomicWeight << "," << atomicNumber << ")" << G4endl;
87 }
88
89 G4double inelasticity = NuclearInelasticity(incidentKineticEnergy,
90 atomicWeight, atomicNumber);
91 if (verboseLevel > 1)
92 G4cout << "nuclear inelasticity = " << inelasticity << G4endl;
93
94 incidentKineticEnergy -= inelasticity;
95
96 G4double excitationEnergyGNP = 0.;
97 G4double excitationEnergyDTA = 0.;
98
99 G4double excitation = NuclearExcitation(incidentKineticEnergy,
100 atomicWeight, atomicNumber,
101 excitationEnergyGNP,
102 excitationEnergyDTA);
103 if (verboseLevel > 1)
104 G4cout << "nuclear excitation = " << excitation << excitationEnergyGNP
105 << excitationEnergyDTA << G4endl;
106
107
108 incidentKineticEnergy -= excitation;
109 incidentTotalEnergy = incidentKineticEnergy + incidentMass;
110 // incidentTotalMomentum = std::sqrt( (incidentTotalEnergy-incidentMass)
111 // *(incidentTotalEnergy+incidentMass));
112 // DHW 19 May 2011: variable set but not used
113
114 G4HEVector targetParticle;
115 if (G4UniformRand() < atomicNumber/atomicWeight) {
116 targetParticle.setDefinition("Proton");
117 } else {
118 targetParticle.setDefinition("Neutron");
119 }
120
121 G4double targetMass = targetParticle.getMass();
122 G4double centerOfMassEnergy = std::sqrt(incidentMass*incidentMass
123 + targetMass*targetMass
124 + 2.0*targetMass*incidentTotalEnergy);
125 G4double availableEnergy = centerOfMassEnergy - targetMass - incidentMass;
126
127 G4bool inElastic = true;
128 vecLength = 0;
129
130 if (verboseLevel > 1)
131 G4cout << "ApplyYourself: CallFirstIntInCascade for particle "
132 << incidentCode << G4endl;
133
134 G4bool successful = false;
135
136 FirstIntInCasAntiOmegaMinus(inElastic, availableEnergy, pv, vecLength,
137 incidentParticle, targetParticle, atomicWeight);
138
139 if (verboseLevel > 1)
140 G4cout << "ApplyYourself::StrangeParticlePairProduction" << G4endl;
141
142 if ((vecLength > 0) && (availableEnergy > 1.))
143 StrangeParticlePairProduction(availableEnergy, centerOfMassEnergy,
144 pv, vecLength,
145 incidentParticle, targetParticle);
146 HighEnergyCascading(successful, pv, vecLength,
147 excitationEnergyGNP, excitationEnergyDTA,
148 incidentParticle, targetParticle,
149 atomicWeight, atomicNumber);
150 if (!successful)
152 excitationEnergyGNP, excitationEnergyDTA,
153 incidentParticle, targetParticle,
154 atomicWeight, atomicNumber);
155 if (!successful)
156 MediumEnergyCascading(successful, pv, vecLength,
157 excitationEnergyGNP, excitationEnergyDTA,
158 incidentParticle, targetParticle,
159 atomicWeight, atomicNumber);
160
161 if (!successful)
163 excitationEnergyGNP, excitationEnergyDTA,
164 incidentParticle, targetParticle,
165 atomicWeight, atomicNumber);
166 if (!successful)
167 QuasiElasticScattering(successful, pv, vecLength,
168 excitationEnergyGNP, excitationEnergyDTA,
169 incidentParticle, targetParticle,
170 atomicWeight, atomicNumber);
171 if (!successful)
172 ElasticScattering(successful, pv, vecLength,
173 incidentParticle,
174 atomicWeight, atomicNumber);
175
176 if (!successful)
177 G4cout << "GHEInelasticInteraction::ApplyYourself fails to produce final state particles"
178 << G4endl;
179
181 delete [] pv;
183 return &theParticleChange;
184}
185
186
187void
189 const G4double availableEnergy,
190 G4HEVector pv[],
191 G4int& vecLen,
192 const G4HEVector& incidentParticle,
193 const G4HEVector& targetParticle,
194 const G4double atomicWeight)
195
196// AntiOmega undergoes interaction with nucleon within a nucleus.
197// As in Geant3, we think that this routine has absolutely no influence
198// on the whole performance of the program. Take AntiLambda instaed.
199{
200 static const G4double expxu = 82.; // upper bound for arg. of exp
201 static const G4double expxl = -expxu; // lower bound for arg. of exp
202
203 static const G4double protb = 0.7;
204 static const G4double neutb = 0.7;
205 static const G4double c = 1.25;
206
207 static const G4int numMul = 1200;
208 static const G4int numMulAn = 400;
209 static const G4int numSec = 60;
210
211 G4int protonCode = Proton.getCode();
212
213 G4int targetCode = targetParticle.getCode();
214 G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
215
216 static G4bool first = true;
217 static G4double protmul[numMul], protnorm[numSec]; // proton constants
218 static G4double protmulAn[numMulAn],protnormAn[numSec];
219 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
220 static G4double neutmulAn[numMulAn],neutnormAn[numSec];
221
222 // misc. local variables
223 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
224
225 G4int i, counter, nt, npos, nneg, nzero;
226
227 if( first )
228 { // compute normalization constants, this will only be done once
229 first = false;
230 for( i=0; i<numMul ; i++ ) protmul[i] = 0.0;
231 for( i=0; i<numSec ; i++ ) protnorm[i] = 0.0;
232 counter = -1;
233 for( npos=0; npos<(numSec/3); npos++ )
234 {
235 for( nneg=std::max(0,npos-2); nneg<=(npos+1); nneg++ )
236 {
237 for( nzero=0; nzero<numSec/3; nzero++ )
238 {
239 if( ++counter < numMul )
240 {
241 nt = npos+nneg+nzero;
242 if( (nt>0) && (nt<=numSec) )
243 {
244 protmul[counter] = pmltpc(npos,nneg,nzero,nt,protb,c);
245 protnorm[nt-1] += protmul[counter];
246 }
247 }
248 }
249 }
250 }
251 for( i=0; i<numMul; i++ )neutmul[i] = 0.0;
252 for( i=0; i<numSec; i++ )neutnorm[i] = 0.0;
253 counter = -1;
254 for( npos=0; npos<numSec/3; npos++ )
255 {
256 for( nneg=std::max(0,npos-1); nneg<=(npos+2); nneg++ )
257 {
258 for( nzero=0; nzero<numSec/3; nzero++ )
259 {
260 if( ++counter < numMul )
261 {
262 nt = npos+nneg+nzero;
263 if( (nt>0) && (nt<=numSec) )
264 {
265 neutmul[counter] = pmltpc(npos,nneg,nzero,nt,neutb,c);
266 neutnorm[nt-1] += neutmul[counter];
267 }
268 }
269 }
270 }
271 }
272 for( i=0; i<numSec; i++ )
273 {
274 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
275 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
276 }
277 // annihilation
278 for( i=0; i<numMulAn ; i++ ) protmulAn[i] = 0.0;
279 for( i=0; i<numSec ; i++ ) protnormAn[i] = 0.0;
280 counter = -1;
281 for( npos=1; npos<(numSec/3); npos++ )
282 {
283 nneg = std::max(0,npos-1);
284 for( nzero=0; nzero<numSec/3; nzero++ )
285 {
286 if( ++counter < numMulAn )
287 {
288 nt = npos+nneg+nzero;
289 if( (nt>1) && (nt<=numSec) )
290 {
291 protmulAn[counter] = pmltpc(npos,nneg,nzero,nt,protb,c);
292 protnormAn[nt-1] += protmulAn[counter];
293 }
294 }
295 }
296 }
297 for( i=0; i<numMulAn; i++ ) neutmulAn[i] = 0.0;
298 for( i=0; i<numSec; i++ ) neutnormAn[i] = 0.0;
299 counter = -1;
300 for( npos=0; npos<numSec/3; npos++ )
301 {
302 nneg = npos;
303 for( nzero=0; nzero<numSec/3; nzero++ )
304 {
305 if( ++counter < numMulAn )
306 {
307 nt = npos+nneg+nzero;
308 if( (nt>1) && (nt<=numSec) )
309 {
310 neutmulAn[counter] = pmltpc(npos,nneg,nzero,nt,neutb,c);
311 neutnormAn[nt-1] += neutmulAn[counter];
312 }
313 }
314 }
315 }
316 for( i=0; i<numSec; i++ )
317 {
318 if( protnormAn[i] > 0.0 )protnormAn[i] = 1.0/protnormAn[i];
319 if( neutnormAn[i] > 0.0 )neutnormAn[i] = 1.0/neutnormAn[i];
320 }
321 } // end of initialization
322
323
324 // initialize the first two places
325 // the same as beam and target
326 pv[0] = incidentParticle;
327 pv[1] = targetParticle;
328 vecLen = 2;
329
330 if( !inElastic )
331 { // some two-body reactions
332 G4double cech[] = {0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.06, 0.04, 0.005, 0.};
333
334 G4int iplab = std::min(9, G4int( incidentTotalMomentum*2.5 ));
335 if( G4UniformRand() < cech[iplab]/std::pow(atomicWeight,0.42) )
336 {
337 G4double ran = G4UniformRand();
338
339 if ( targetCode == protonCode)
340 {
341 if(ran < 0.2)
342 {
343 pv[0] = AntiSigmaZero;
344 }
345 else if (ran < 0.4)
346 {
347 pv[0] = AntiSigmaMinus;
348 pv[1] = Neutron;
349 }
350 else if (ran < 0.6)
351 {
352 pv[0] = Proton;
353 pv[1] = AntiLambda;
354 }
355 else if (ran < 0.8)
356 {
357 pv[0] = Proton;
358 pv[1] = AntiSigmaZero;
359 }
360 else
361 {
362 pv[0] = Neutron;
363 pv[1] = AntiSigmaMinus;
364 }
365 }
366 else
367 {
368 if (ran < 0.2)
369 {
370 pv[0] = AntiSigmaZero;
371 }
372 else if (ran < 0.4)
373 {
374 pv[0] = AntiSigmaPlus;
375 pv[1] = Proton;
376 }
377 else if (ran < 0.6)
378 {
379 pv[0] = Neutron;
380 pv[1] = AntiLambda;
381 }
382 else if (ran < 0.8)
383 {
384 pv[0] = Neutron;
385 pv[1] = AntiSigmaZero;
386 }
387 else
388 {
389 pv[0] = Proton;
390 pv[1] = AntiSigmaPlus;
391 }
392 }
393 }
394 return;
395 }
396 else if (availableEnergy <= PionPlus.getMass())
397 return;
398
399 // inelastic scattering
400
401 npos = 0; nneg = 0; nzero = 0;
402 G4double anhl[] = {1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 0.97, 0.88,
403 0.85, 0.81, 0.75, 0.64, 0.64, 0.55, 0.55, 0.45, 0.47, 0.40,
404 0.39, 0.36, 0.33, 0.10, 0.01};
405 G4int iplab = G4int( incidentTotalMomentum*10.);
406 if ( iplab > 9) iplab = 10 + G4int( (incidentTotalMomentum -1.)*5. );
407 if ( iplab > 14) iplab = 15 + G4int( incidentTotalMomentum -2. );
408 if ( iplab > 22) iplab = 23 + G4int( (incidentTotalMomentum -10.)/10.);
409 iplab = std::min(24, iplab);
410
411 if (G4UniformRand() > anhl[iplab]) { // non- annihilation channels
412
413 // number of total particles vs. centre of mass Energy - 2*proton mass
414 G4double aleab = std::log(availableEnergy);
415 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
416 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
417
418 // normalization constant for kno-distribution.
419 // calculate first the sum of all constants, check for numerical problems.
420 G4double test, dum, anpn = 0.0;
421
422 for (nt=1; nt<=numSec; nt++) {
423 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
424 dum = pi*nt/(2.0*n*n);
425 if (std::fabs(dum) < 1.0) {
426 if( test >= 1.0e-10 )anpn += dum*test;
427 } else {
428 anpn += dum*test;
429 }
430 }
431
432 G4double ran = G4UniformRand();
433 G4double excs = 0.0;
434 if( targetCode == protonCode )
435 {
436 counter = -1;
437 for (npos=0; npos<numSec/3; npos++) {
438 for (nneg=std::max(0,npos-2); nneg<=(npos+1); nneg++) {
439 for (nzero=0; nzero<numSec/3; nzero++) {
440 if (++counter < numMul) {
441 nt = npos+nneg+nzero;
442 if ( (nt>0) && (nt<=numSec) ) {
443 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
444 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
445 if (std::fabs(dum) < 1.0) {
446 if( test >= 1.0e-10 )excs += dum*test;
447 } else {
448 excs += dum*test;
449 }
450
451 if (ran < excs) goto outOfLoop; //----------------------->
452 }
453 }
454 }
455 }
456 }
457
458 // 3 previous loops continued to the end
459 inElastic = false; // quasi-elastic scattering
460 return;
461 }
462 else
463 { // target must be a neutron
464 counter = -1;
465 for (npos=0; npos<numSec/3; npos++) {
466 for (nneg=std::max(0,npos-1); nneg<=(npos+2); nneg++) {
467 for (nzero=0; nzero<numSec/3; nzero++) {
468 if (++counter < numMul) {
469 nt = npos+nneg+nzero;
470 if ( (nt>0) && (nt<=numSec) ) {
471 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
472 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
473 if (std::fabs(dum) < 1.0) {
474 if( test >= 1.0e-10 )excs += dum*test;
475 } else {
476 excs += dum*test;
477 }
478
479 if (ran < excs) goto outOfLoop; // ----------->
480 }
481 }
482 }
483 }
484 }
485 // 3 previous loops continued to the end
486 inElastic = false; // quasi-elastic scattering.
487 return;
488 }
489
490 outOfLoop: // <-----------------------------------
491
492 ran = G4UniformRand();
493
494 if( targetCode == protonCode)
495 {
496 if( npos == nneg)
497 {
498 if (ran < 0.40)
499 {
500 }
501 else if (ran < 0.8)
502 {
503 pv[0] = AntiSigmaZero;
504 }
505 else
506 {
507 pv[0] = AntiSigmaMinus;
508 pv[1] = Neutron;
509 }
510 }
511 else if (npos == (nneg+1))
512 {
513 if( ran < 0.25)
514 {
515 pv[1] = Neutron;
516 }
517 else if (ran < 0.5)
518 {
519 pv[0] = AntiSigmaZero;
520 pv[1] = Neutron;
521 }
522 else
523 {
524 pv[0] = AntiSigmaPlus;
525 }
526 }
527 else if (npos == (nneg-1))
528 {
529 pv[0] = AntiSigmaMinus;
530 }
531 else
532 {
533 pv[0] = AntiSigmaPlus;
534 pv[1] = Neutron;
535 }
536 }
537 else
538 {
539 if( npos == nneg)
540 {
541 if (ran < 0.4)
542 {
543 }
544 else if(ran < 0.8)
545 {
546 pv[0] = AntiSigmaZero;
547 }
548 else
549 {
550 pv[0] = AntiSigmaPlus;
551 pv[1] = Proton;
552 }
553 }
554 else if ( npos == (nneg-1))
555 {
556 if (ran < 0.5)
557 {
558 pv[0] = AntiSigmaMinus;
559 }
560 else if (ran < 0.75)
561 {
562 pv[1] = Proton;
563 }
564 else
565 {
566 pv[0] = AntiSigmaZero;
567 pv[1] = Proton;
568 }
569 }
570 else if (npos == (nneg+1))
571 {
572 pv[0] = AntiSigmaPlus;
573 }
574 else
575 {
576 pv[0] = AntiSigmaMinus;
577 pv[1] = Proton;
578 }
579 }
580
581 }
582 else // annihilation
583 {
584 if ( availableEnergy > 2. * PionPlus.getMass() )
585 {
586
587 G4double aleab = std::log(availableEnergy);
588 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
589 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
590
591 // normalization constant for kno-distribution.
592 // calculate first the sum of all constants, check for numerical problems.
593 G4double test, dum, anpn = 0.0;
594
595 for (nt=2; nt<=numSec; nt++) {
596 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
597 dum = pi*nt/(2.0*n*n);
598 if (std::fabs(dum) < 1.0) {
599 if( test >= 1.0e-10 )anpn += dum*test;
600 } else {
601 anpn += dum*test;
602 }
603 }
604
605 G4double ran = G4UniformRand();
606 G4double excs = 0.0;
607 if( targetCode == protonCode )
608 {
609 counter = -1;
610 for( npos=1; npos<numSec/3; npos++ )
611 {
612 nneg = npos-1;
613 for( nzero=0; nzero<numSec/3; nzero++ )
614 {
615 if( ++counter < numMulAn )
616 {
617 nt = npos+nneg+nzero;
618 if ( (nt>1) && (nt<=numSec) ) {
619 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
620 dum = (pi/anpn)*nt*protmulAn[counter]*protnormAn[nt-1]/(2.0*n*n);
621 if (std::fabs(dum) < 1.0) {
622 if( test >= 1.0e-10 )excs += dum*test;
623 } else {
624 excs += dum*test;
625 }
626
627 if (ran < excs) goto outOfLoopAn; //----------------------->
628 }
629 }
630 }
631 }
632 // 3 previous loops continued to the end
633 inElastic = false; // quasi-elastic scattering
634 return;
635 }
636 else
637 { // target must be a neutron
638 counter = -1;
639 for( npos=0; npos<numSec/3; npos++ )
640 {
641 nneg = npos;
642 for( nzero=0; nzero<numSec/3; nzero++ )
643 {
644 if( ++counter < numMulAn )
645 {
646 nt = npos+nneg+nzero;
647 if ( (nt>1) && (nt<=numSec) ) {
648 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
649 dum = (pi/anpn)*nt*neutmulAn[counter]*neutnormAn[nt-1]/(2.0*n*n);
650 if (std::fabs(dum) < 1.0) {
651 if( test >= 1.0e-10 )excs += dum*test;
652 } else {
653 excs += dum*test;
654 }
655
656 if (ran < excs) goto outOfLoopAn; // -------------------------->
657 }
658 }
659 }
660 }
661 inElastic = false; // quasi-elastic scattering.
662 return;
663 }
664 outOfLoopAn: // <------------------------------------------------------------------
665 vecLen = 0;
666 }
667 }
668
669 nt = npos + nneg + nzero;
670 while ( nt > 0)
671 {
672 G4double ran = G4UniformRand();
673 if ( ran < (G4double)npos/nt)
674 {
675 if( npos > 0 )
676 { pv[vecLen++] = PionPlus;
677 npos--;
678 }
679 }
680 else if ( ran < (G4double)(npos+nneg)/nt)
681 {
682 if( nneg > 0 )
683 {
684 pv[vecLen++] = PionMinus;
685 nneg--;
686 }
687 }
688 else
689 {
690 if( nzero > 0 )
691 {
692 pv[vecLen++] = PionZero;
693 nzero--;
694 }
695 }
696 nt = npos + nneg + nzero;
697 }
698 if (verboseLevel > 1)
699 {
700 G4cout << "Particles produced: " ;
701 G4cout << pv[0].getName() << " " ;
702 G4cout << pv[1].getName() << " " ;
703 for (i=2; i < vecLen; i++)
704 {
705 G4cout << pv[i].getName() << " " ;
706 }
707 G4cout << G4endl;
708 }
709 return;
710 }
711
712
713
714
715
716
717
718
719
720
@ stopAndKill
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
void FirstIntInCasAntiOmegaMinus(G4bool &inElastic, const G4double availableEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, const G4double atomicWeight)
virtual void ModelDescription(std::ostream &) const
G4HEVector PionPlus
G4HEVector AntiSigmaZero
G4double pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
G4HEVector AntiSigmaPlus
void MediumEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
void ElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, G4double atomicWeight, G4double atomicNumber)
void QuasiElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector Neutron
void FillParticleChange(G4HEVector pv[], G4int aVecLength)
G4HEVector PionMinus
void HighEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector PionZero
G4double NuclearExcitation(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber, G4double &excitationEnergyCascade, G4double &excitationEnergyEvaporation)
G4HEVector AntiSigmaMinus
G4HEVector AntiLambda
G4HEVector Proton
void MediumEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4double NuclearInelasticity(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber)
void StrangeParticlePairProduction(const G4double availableEnergy, const G4double centerOfMassEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle)
void HighEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4double getEnergy() const
Definition: G4HEVector.cc:313
G4double getMass() const
Definition: G4HEVector.cc:361
G4int getCode() const
Definition: G4HEVector.cc:426
G4double getTotalMomentum() const
Definition: G4HEVector.cc:166
G4String getName() const
Definition: G4HEVector.cc:431
void setDefinition(G4String name)
Definition: G4HEVector.cc:812
void SetStatusChange(G4HadFinalStateStatus aS)
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115