Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4HESigmaPlusInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27
28// G4 Process: Gheisha High Energy Collision model.
29// This includes the high energy cascading model, the two-body-resonance model
30// and the low energy two-body model. Not included are the low energy stuff
31// like nuclear reactions, nuclear fission without any cascading and all
32// processes for particles at rest.
33// First work done by J.L.Chuma and F.W.Jones, TRIUMF, June 96.
34// H. Fesefeldt, RWTH-Aachen, 23-October-1996
35
37#include "globals.hh"
38#include "G4ios.hh"
40#include "G4SystemOfUnits.hh"
41
42
44 : G4HEInelastic(name)
45{
46 vecLength = 0;
47 theMinEnergy = 20*GeV;
48 theMaxEnergy = 10*TeV;
49 MAXPART = 2048;
50 verboseLevel = 0;
51 G4cout << "WARNING: model G4HESigmaPlusInelastic is being deprecated and will\n"
52 << "disappear in Geant4 version 10.0" << G4endl;
53}
54
55void G4HESigmaPlusInelastic::ModelDescription(std::ostream& outFile) const
56{
57 outFile << "G4HESigmaPlusInelastic is one of the High Energy\n"
58 << "Parameterized (HEP) models used to implement inelastic\n"
59 << "Sigma+ scattering from nuclei. It is a re-engineered\n"
60 << "version of the GHEISHA code of H. Fesefeldt. It divides the\n"
61 << "initial collision products into backward- and forward-going\n"
62 << "clusters which are then decayed into final state hadrons.\n"
63 << "The model does not conserve energy on an event-by-event\n"
64 << "basis. It may be applied to Sigma+ with initial energies\n"
65 << "above 20 GeV.\n";
66}
67
68
71 G4Nucleus& targetNucleus)
72{
73 G4HEVector* pv = new G4HEVector[MAXPART];
74 const G4HadProjectile* aParticle = &aTrack;
75 const G4double A = targetNucleus.GetA_asInt();
76 const G4double Z = targetNucleus.GetZ_asInt();
77 G4HEVector incidentParticle(aParticle);
78
79 G4double atomicNumber = Z;
80 G4double atomicWeight = A;
81
82 G4int incidentCode = incidentParticle.getCode();
83 G4double incidentMass = incidentParticle.getMass();
84 G4double incidentTotalEnergy = incidentParticle.getEnergy();
85
86 // G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
87 // DHW 19 May 2011: variable set but not used
88
89 G4double incidentKineticEnergy = incidentTotalEnergy - incidentMass;
90
91 if (incidentKineticEnergy < 1.)
92 G4cout << "GHESigmaPlusInelastic: incident energy < 1 GeV" << G4endl;
93
94 if (verboseLevel > 1) {
95 G4cout << "G4HESigmaPlusInelastic::ApplyYourself" << G4endl;
96 G4cout << "incident particle " << incidentParticle.getName()
97 << "mass " << incidentMass
98 << "kinetic energy " << incidentKineticEnergy
99 << G4endl;
100 G4cout << "target material with (A,Z) = ("
101 << atomicWeight << "," << atomicNumber << ")" << G4endl;
102 }
103
104 G4double inelasticity = NuclearInelasticity(incidentKineticEnergy,
105 atomicWeight, atomicNumber);
106 if (verboseLevel > 1)
107 G4cout << "nuclear inelasticity = " << inelasticity << G4endl;
108
109 incidentKineticEnergy -= inelasticity;
110
111 G4double excitationEnergyGNP = 0.;
112 G4double excitationEnergyDTA = 0.;
113
114 G4double excitation = NuclearExcitation(incidentKineticEnergy,
115 atomicWeight, atomicNumber,
116 excitationEnergyGNP,
117 excitationEnergyDTA);
118 if (verboseLevel > 1)
119 G4cout << "nuclear excitation = " << excitation << excitationEnergyGNP
120 << excitationEnergyDTA << G4endl;
121
122 incidentKineticEnergy -= excitation;
123 incidentTotalEnergy = incidentKineticEnergy + incidentMass;
124 // incidentTotalMomentum = std::sqrt( (incidentTotalEnergy-incidentMass)
125 // *(incidentTotalEnergy+incidentMass));
126 // DHW 19 May 2011: variable set but not used
127
128 G4HEVector targetParticle;
129 if (G4UniformRand() < atomicNumber/atomicWeight) {
130 targetParticle.setDefinition("Proton");
131 } else {
132 targetParticle.setDefinition("Neutron");
133 }
134
135 G4double targetMass = targetParticle.getMass();
136 G4double centerOfMassEnergy = std::sqrt(incidentMass*incidentMass
137 + targetMass*targetMass
138 + 2.0*targetMass*incidentTotalEnergy);
139 G4double availableEnergy = centerOfMassEnergy - targetMass - incidentMass;
140
141 G4bool inElastic = true;
142 vecLength = 0;
143
144 if (verboseLevel > 1)
145 G4cout << "ApplyYourself: CallFirstIntInCascade for particle "
146 << incidentCode << G4endl;
147
148 G4bool successful = false;
149
150 FirstIntInCasSigmaPlus(inElastic, availableEnergy, pv, vecLength,
151 incidentParticle, targetParticle, atomicWeight);
152
153 if (verboseLevel > 1)
154 G4cout << "ApplyYourself::StrangeParticlePairProduction" << G4endl;
155
156 if ((vecLength > 0) && (availableEnergy > 1.))
157 StrangeParticlePairProduction(availableEnergy, centerOfMassEnergy,
158 pv, vecLength,
159 incidentParticle, targetParticle);
160
161 HighEnergyCascading(successful, pv, vecLength,
162 excitationEnergyGNP, excitationEnergyDTA,
163 incidentParticle, targetParticle,
164 atomicWeight, atomicNumber);
165 if (!successful)
167 excitationEnergyGNP, excitationEnergyDTA,
168 incidentParticle, targetParticle,
169 atomicWeight, atomicNumber);
170 if (!successful)
171 MediumEnergyCascading(successful, pv, vecLength,
172 excitationEnergyGNP, excitationEnergyDTA,
173 incidentParticle, targetParticle,
174 atomicWeight, atomicNumber);
175
176 if (!successful)
178 excitationEnergyGNP, excitationEnergyDTA,
179 incidentParticle, targetParticle,
180 atomicWeight, atomicNumber);
181 if (!successful)
182 QuasiElasticScattering(successful, pv, vecLength,
183 excitationEnergyGNP, excitationEnergyDTA,
184 incidentParticle, targetParticle,
185 atomicWeight, atomicNumber);
186 if (!successful)
187 ElasticScattering(successful, pv, vecLength,
188 incidentParticle,
189 atomicWeight, atomicNumber);
190
191 if (!successful)
192 G4cout << "GHEInelasticInteraction::ApplyYourself fails to produce final state particles"
193 << G4endl;
194
196 delete [] pv;
198 return &theParticleChange;
199}
200
201
202void
204 const G4double availableEnergy,
205 G4HEVector pv[],
206 G4int& vecLen,
207 const G4HEVector& incidentParticle,
208 const G4HEVector& targetParticle,
209 const G4double atomicWeight)
210
211// Sigma+ undergoes interaction with nucleon within a nucleus. Check if it is
212// energetically possible to produce pions/kaons. In not, assume nuclear excitation
213// occurs and input particle is degraded in energy. No other particles are produced.
214// If reaction is possible, find the correct number of pions/protons/neutrons
215// produced using an interpolation to multiplicity data. Replace some pions or
216// protons/neutrons by kaons or strange baryons according to the average
217// multiplicity per inelastic reaction.
218{
219 static const G4double expxu = 82.; // upper bound for arg. of exp
220 static const G4double expxl = -expxu; // lower bound for arg. of exp
221
222 static const G4double protb = 0.7;
223 static const G4double neutb = 0.7;
224 static const G4double c = 1.25;
225
226 static const G4int numMul = 1200;
227 static const G4int numSec = 60;
228
229 G4int protonCode = Proton.getCode();
230
231 G4int targetCode = targetParticle.getCode();
232 G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
233
234 static G4bool first = true;
235 static G4double protmul[numMul], protnorm[numSec]; // proton constants
236 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
237
238 // misc. local variables
239 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
240
241 G4int i, counter, nt, npos, nneg, nzero;
242
243 if (first) {
244 // compute normalization constants, this will only be done once
245 first = false;
246 for( i=0; i<numMul; i++ )protmul[i] = 0.0;
247 for( i=0; i<numSec; i++ )protnorm[i] = 0.0;
248 counter = -1;
249 for( npos=0; npos<(numSec/3); npos++ )
250 {
251 for( nneg=std::max(0,npos-2); nneg<=npos; nneg++ )
252 {
253 for( nzero=0; nzero<numSec/3; nzero++ )
254 {
255 if( ++counter < numMul )
256 {
257 nt = npos+nneg+nzero;
258 if( (nt>0) && (nt<=numSec) )
259 {
260 protmul[counter] = pmltpc(npos,nneg,nzero,nt,protb,c);
261 protnorm[nt-1] += protmul[counter];
262 }
263 }
264 }
265 }
266 }
267 for( i=0; i<numMul; i++ )neutmul[i] = 0.0;
268 for( i=0; i<numSec; i++ )neutnorm[i] = 0.0;
269 counter = -1;
270 for( npos=0; npos<numSec/3; npos++ )
271 {
272 for( nneg=std::max(0,npos-1); nneg<=(npos+1); nneg++ )
273 {
274 for( nzero=0; nzero<numSec/3; nzero++ )
275 {
276 if( ++counter < numMul )
277 {
278 nt = npos+nneg+nzero;
279 if( (nt>0) && (nt<=numSec) )
280 {
281 neutmul[counter] = pmltpc(npos,nneg,nzero,nt,neutb,c);
282 neutnorm[nt-1] += neutmul[counter];
283 }
284 }
285 }
286 }
287 }
288 for( i=0; i<numSec; i++ )
289 {
290 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
291 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
292 }
293 } // end of initialization
294
295
296 // initialize the first two places
297 // the same as beam and target
298 pv[0] = incidentParticle;
299 pv[1] = targetParticle;
300 vecLen = 2;
301
302 if( !inElastic )
303 { // quasi-elastic scattering, no pions produced
304 G4double cech[] = {0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.06, 0.04, 0.005, 0.};
305 G4int iplab = G4int( std::min( 9.0, incidentTotalMomentum*2.5 ) );
306 if( G4UniformRand() < cech[iplab]/std::pow(atomicWeight,0.42) )
307 {
308 G4double ran = G4UniformRand();
309 if( targetCode == protonCode)
310 {
311 pv[0] = Proton;
312 pv[1] = SigmaPlus;
313 }
314 else
315 {
316 if(ran < 0.2)
317 {
318 pv[0] = SigmaZero;
319 pv[1] = Proton;
320 }
321 else if(ran < 0.4)
322 {
323 pv[0] = Lambda;
324 pv[1] = Proton;
325 }
326 else if(ran < 0.6)
327 {
328 pv[0] = Neutron;
329 pv[1] = SigmaPlus;
330 }
331 else if(ran < 0.8)
332 {
333 pv[0] = Proton;
334 pv[1] = SigmaZero;
335 }
336 else
337 {
338 pv[0] = Proton;
339 pv[1] = Lambda;
340 }
341 }
342 }
343 return;
344 }
345 else if (availableEnergy <= PionPlus.getMass())
346 return;
347
348 // inelastic scattering
349
350 npos = 0; nneg = 0; nzero = 0;
351
352 // number of total particles vs. centre of mass Energy - 2*proton mass
353
354 G4double aleab = std::log(availableEnergy);
355 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
356 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
357
358 // normalization constant for kno-distribution.
359 // calculate first the sum of all constants, check for numerical problems.
360 G4double test, dum, anpn = 0.0;
361
362 for (nt=1; nt<=numSec; nt++) {
363 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
364 dum = pi*nt/(2.0*n*n);
365 if (std::fabs(dum) < 1.0) {
366 if (test >= 1.0e-10) anpn += dum*test;
367 } else {
368 anpn += dum*test;
369 }
370 }
371
372 G4double ran = G4UniformRand();
373 G4double excs = 0.0;
374 if( targetCode == protonCode )
375 {
376 counter = -1;
377 for (npos=0; npos<numSec/3; npos++) {
378 for (nneg=std::max(0,npos-2); nneg<=npos; nneg++) {
379 for (nzero=0; nzero<numSec/3; nzero++) {
380 if (++counter < numMul) {
381 nt = npos+nneg+nzero;
382 if ( (nt>0) && (nt<=numSec) ) {
383 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
384 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
385 if (std::fabs(dum) < 1.0) {
386 if (test >= 1.0e-10) excs += dum*test;
387 } else {
388 excs += dum*test;
389 }
390 if (ran < excs) goto outOfLoop; //----------------------->
391 }
392 }
393 }
394 }
395 }
396
397 // 3 previous loops continued to the end
398 inElastic = false; // quasi-elastic scattering
399 return;
400 }
401 else
402 { // target must be a neutron
403 counter = -1;
404 for (npos=0; npos<numSec/3; npos++) {
405 for (nneg=std::max(0,npos-1); nneg<=(npos+1); nneg++) {
406 for (nzero=0; nzero<numSec/3; nzero++) {
407 if (++counter < numMul) {
408 nt = npos+nneg+nzero;
409 if ( (nt>=1) && (nt<=numSec) ) {
410 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
411 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
412 if (std::fabs(dum) < 1.0) {
413 if( test >= 1.0e-10 )excs += dum*test;
414 } else {
415 excs += dum*test;
416 }
417 if (ran < excs) goto outOfLoop; // ---------------------->
418 }
419 }
420 }
421 }
422 }
423 // 3 previous loops continued to the end
424 inElastic = false; // quasi-elastic scattering.
425 return;
426 }
427
428 outOfLoop: // <------------------------------------------------
429
430 ran = G4UniformRand();
431 if (targetCode == protonCode) {
432 if( npos == nneg)
433 {
434 }
435 else if (npos == (nneg+1))
436 {
437 if( ran < 0.25)
438 {
439 pv[0] = SigmaZero;
440 }
441 else if(ran < 0.5)
442 {
443 pv[0] = Lambda;
444 }
445 else
446 {
447 pv[1] = Neutron;
448 }
449 }
450 else
451 {
452 if(ran < 0.5)
453 {
454 pv[0] = SigmaZero;
455 pv[1] = Neutron;
456 }
457 else
458 {
459 pv[0] = Lambda;
460 pv[1] = Neutron;
461 }
462 }
463 } else {
464 if (npos == nneg)
465 {
466 if (ran < 0.5)
467 {
468 }
469 else if (ran < 0.75)
470 {
471 pv[0] = SigmaZero;
472 pv[1] = Proton;
473 }
474 else
475 {
476 pv[0] = Lambda;
477 pv[1] = Proton;
478 }
479 }
480 else if (npos == (nneg-1))
481 {
482 pv[1] = Proton;
483 }
484 else
485 {
486 if (ran < 0.5)
487 {
488 pv[0] = SigmaZero;
489 }
490 else
491 {
492 pv[0] = Lambda;
493 }
494 }
495 }
496
497 nt = npos + nneg + nzero;
498 while (nt > 0) {
499 G4double rnd = G4UniformRand();
500 if (rnd < (G4double)npos/nt) {
501 if (npos > 0) {
502 pv[vecLen++] = PionPlus;
503 npos--;
504 }
505 } else if (rnd < (G4double)(npos+nneg)/nt) {
506 if (nneg > 0) {
507 pv[vecLen++] = PionMinus;
508 nneg--;
509 }
510 } else {
511 if (nzero > 0) {
512 pv[vecLen++] = PionZero;
513 nzero--;
514 }
515 }
516 nt = npos + nneg + nzero;
517 }
518
519 if (verboseLevel > 1) {
520 G4cout << "Particles produced: " ;
521 G4cout << pv[0].getName() << " " ;
522 G4cout << pv[1].getName() << " " ;
523 for (i = 2; i < vecLen; i++) G4cout << pv[i].getName() << " " ;
524 G4cout << G4endl;
525 }
526
527 return;
528}
529
@ stopAndKill
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
G4HEVector PionPlus
G4HEVector SigmaZero
G4double pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
G4HEVector Lambda
G4HEVector SigmaPlus
void MediumEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
void ElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, G4double atomicWeight, G4double atomicNumber)
void QuasiElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector Neutron
void FillParticleChange(G4HEVector pv[], G4int aVecLength)
G4HEVector PionMinus
void HighEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector PionZero
G4double NuclearExcitation(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber, G4double &excitationEnergyCascade, G4double &excitationEnergyEvaporation)
G4HEVector Proton
void MediumEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4double NuclearInelasticity(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber)
void StrangeParticlePairProduction(const G4double availableEnergy, const G4double centerOfMassEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle)
void HighEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4HESigmaPlusInelastic(const G4String &name="G4HESigmaPlusInelastic")
void FirstIntInCasSigmaPlus(G4bool &inElastic, const G4double availableEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, const G4double atomicWeight)
virtual void ModelDescription(std::ostream &) const
G4double getEnergy() const
Definition: G4HEVector.cc:313
G4double getMass() const
Definition: G4HEVector.cc:361
G4int getCode() const
Definition: G4HEVector.cc:426
G4double getTotalMomentum() const
Definition: G4HEVector.cc:166
G4String getName() const
Definition: G4HEVector.cc:431
void setDefinition(G4String name)
Definition: G4HEVector.cc:812
void SetStatusChange(G4HadFinalStateStatus aS)
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115