78{
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106 G4double pSquared = y[3]*y[3] + y[4]*y[4] + y[5]*y[5] ;
107
108 G4double Energy = std::sqrt( pSquared + fMassCof );
110
111 G4double pModuleInverse = 1.0/std::sqrt(pSquared) ;
112
113 G4double inverse_velocity = Energy * pModuleInverse / c_light;
114
115 G4double cof1 = fElectroMagCof*pModuleInverse ;
116
117 dydx[0] = y[3]*pModuleInverse ;
118 dydx[1] = y[4]*pModuleInverse ;
119 dydx[2] = y[5]*pModuleInverse ;
120
121 dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field[2] - y[5]*Field[1])) ;
122
123 dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field[0] - y[3]*Field[2])) ;
124
125 dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field[1] - y[4]*Field[0])) ;
126
127 dydx[6] = dydx[8] = 0.;
128
129
130 dydx[7] = inverse_velocity;
131
134
135 EField /= c_light;
136
138 u *= pModuleInverse;
139
140 G4double udb = anomaly*beta*gamma/(1.+gamma) * (BField * u);
141 G4double ucb = (anomaly+1./gamma)/beta;
142 G4double uce = anomaly + 1./(gamma+1.);
143 G4double ude = beta*gamma/(1.+gamma)*(EField*u);
144
146
148 = pcharge*omegac*( ucb*(Spin.cross(BField))-udb*(Spin.cross(u))
149
150
151
152 - uce*(u*(Spin*EField) - EField*(Spin*u))
153 + eta/2.*(Spin.cross(EField) - ude*(Spin.cross(u))
154
155 + (u*(Spin*BField) - BField*(Spin*u)) ) );
156
157 dydx[ 9] = dSpin.
x();
158 dydx[10] = dSpin.
y();
159 dydx[11] = dSpin.
z();
160
161 return ;
162}