Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4HEAntiXiMinusInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28
29// G4 Process: Gheisha High Energy Collision model.
30// This includes the high energy cascading model, the two-body-resonance model
31// and the low energy two-body model. Not included are the low energy stuff
32// like nuclear reactions, nuclear fission without any cascading and all
33// processes for particles at rest.
34// First work done by J.L.Chuma and F.W.Jones, TRIUMF, June 96.
35// H. Fesefeldt, RWTH-Aachen, 23-October-1996
36
38#include "globals.hh"
39#include "G4ios.hh"
41
42void G4HEAntiXiMinusInelastic::ModelDescription(std::ostream& outFile) const
43{
44 outFile << "G4HEAntiXiMinusInelastic is one of the High Energy\n"
45 << "Parameterized (HEP) models used to implement inelastic\n"
46 << "anti-Xi- scattering from nuclei. It is a re-engineered\n"
47 << "version of the GHEISHA code of H. Fesefeldt. It divides the\n"
48 << "initial collision products into backward- and forward-going\n"
49 << "clusters which are then decayed into final state hadrons.\n"
50 << "The model does not conserve energy on an event-by-event\n"
51 << "basis. It may be applied to anti-Xi- with initial energies\n"
52 << "above 20 GeV.\n";
53}
54
55
58 G4Nucleus& targetNucleus)
59{
60 G4HEVector* pv = new G4HEVector[MAXPART];
61 const G4HadProjectile* aParticle = &aTrack;
62 const G4double A = targetNucleus.GetA_asInt();
63 const G4double Z = targetNucleus.GetZ_asInt();
64 G4HEVector incidentParticle(aParticle);
65
66 G4double atomicNumber = Z;
67 G4double atomicWeight = A;
68
69 G4int incidentCode = incidentParticle.getCode();
70 G4double incidentMass = incidentParticle.getMass();
71 G4double incidentTotalEnergy = incidentParticle.getEnergy();
72
73 // G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
74 // DHW 19 May 2011: variable set but not used
75
76 G4double incidentKineticEnergy = incidentTotalEnergy - incidentMass;
77
78 if (incidentKineticEnergy < 1.)
79 G4cout << "GHEAntiXiMinusInelastic: incident energy < 1 GeV" << G4endl;
80
81 if (verboseLevel > 1) {
82 G4cout << "G4HEAntiXiMinusInelastic::ApplyYourself" << G4endl;
83 G4cout << "incident particle " << incidentParticle.getName()
84 << "mass " << incidentMass
85 << "kinetic energy " << incidentKineticEnergy
86 << G4endl;
87 G4cout << "target material with (A,Z) = ("
88 << atomicWeight << "," << atomicNumber << ")" << G4endl;
89 }
90
91 G4double inelasticity = NuclearInelasticity(incidentKineticEnergy,
92 atomicWeight, atomicNumber);
93 if (verboseLevel > 1)
94 G4cout << "nuclear inelasticity = " << inelasticity << G4endl;
95
96 incidentKineticEnergy -= inelasticity;
97
98 G4double excitationEnergyGNP = 0.;
99 G4double excitationEnergyDTA = 0.;
100
101 G4double excitation = NuclearExcitation(incidentKineticEnergy,
102 atomicWeight, atomicNumber,
103 excitationEnergyGNP,
104 excitationEnergyDTA);
105 if (verboseLevel > 1)
106 G4cout << "nuclear excitation = " << excitation << excitationEnergyGNP
107 << excitationEnergyDTA << G4endl;
108
109 incidentKineticEnergy -= excitation;
110 incidentTotalEnergy = incidentKineticEnergy + incidentMass;
111 // incidentTotalMomentum = std::sqrt( (incidentTotalEnergy-incidentMass)
112 // *(incidentTotalEnergy+incidentMass));
113 // DHW 19 May 2011: variable set but not used
114
115 G4HEVector targetParticle;
116 if (G4UniformRand() < atomicNumber/atomicWeight) {
117 targetParticle.setDefinition("Proton");
118 } else {
119 targetParticle.setDefinition("Neutron");
120 }
121
122 G4double targetMass = targetParticle.getMass();
123 G4double centerOfMassEnergy = std::sqrt(incidentMass*incidentMass
124 + targetMass*targetMass
125 + 2.0*targetMass*incidentTotalEnergy);
126 G4double availableEnergy = centerOfMassEnergy - targetMass - incidentMass;
127
128 G4bool inElastic = true;
129 vecLength = 0;
130
131 if (verboseLevel > 1)
132 G4cout << "ApplyYourself: CallFirstIntInCascade for particle "
133 << incidentCode << G4endl;
134
135 G4bool successful = false;
136
137 FirstIntInCasAntiXiMinus(inElastic, availableEnergy, pv, vecLength,
138 incidentParticle, targetParticle, atomicWeight);
139
140 if (verboseLevel > 1)
141 G4cout << "ApplyYourself::StrangeParticlePairProduction" << G4endl;
142
143 if ((vecLength > 0) && (availableEnergy > 1.))
144 StrangeParticlePairProduction(availableEnergy, centerOfMassEnergy,
145 pv, vecLength,
146 incidentParticle, targetParticle);
147 HighEnergyCascading(successful, pv, vecLength,
148 excitationEnergyGNP, excitationEnergyDTA,
149 incidentParticle, targetParticle,
150 atomicWeight, atomicNumber);
151 if (!successful)
153 excitationEnergyGNP, excitationEnergyDTA,
154 incidentParticle, targetParticle,
155 atomicWeight, atomicNumber);
156 if (!successful)
157 MediumEnergyCascading(successful, pv, vecLength,
158 excitationEnergyGNP, excitationEnergyDTA,
159 incidentParticle, targetParticle,
160 atomicWeight, atomicNumber);
161
162 if (!successful)
164 excitationEnergyGNP, excitationEnergyDTA,
165 incidentParticle, targetParticle,
166 atomicWeight, atomicNumber);
167 if (!successful)
168 QuasiElasticScattering(successful, pv, vecLength,
169 excitationEnergyGNP, excitationEnergyDTA,
170 incidentParticle, targetParticle,
171 atomicWeight, atomicNumber);
172 if (!successful)
173 ElasticScattering(successful, pv, vecLength,
174 incidentParticle,
175 atomicWeight, atomicNumber);
176
177 if (!successful)
178 G4cout << "GHEInelasticInteraction::ApplyYourself fails to produce final state particles"
179 << G4endl;
180
182 delete [] pv;
184 return &theParticleChange;
185}
186
187
188void
190 const G4double availableEnergy,
191 G4HEVector pv[],
192 G4int& vecLen,
193 const G4HEVector& incidentParticle,
194 const G4HEVector& targetParticle,
195 const G4double atomicWeight)
196
197// AntiXi- undergoes interaction with nucleon within a nucleus.
198// As in Geant3, we think that this routine has absolutely no influence
199// on the whole performance of the program. Take AntiLambda instaed.
200{
201 static const G4double expxu = 82.; // upper bound for arg. of exp
202 static const G4double expxl = -expxu; // lower bound for arg. of exp
203
204 static const G4double protb = 0.7;
205 static const G4double neutb = 0.7;
206 static const G4double c = 1.25;
207
208 static const G4int numMul = 1200;
209 static const G4int numMulAn = 400;
210 static const G4int numSec = 60;
211
212 G4int protonCode = Proton.getCode();
213
214 G4int targetCode = targetParticle.getCode();
215 G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
216
217 static G4bool first = true;
218 static G4double protmul[numMul], protnorm[numSec]; // proton constants
219 static G4double protmulAn[numMulAn],protnormAn[numSec];
220 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
221 static G4double neutmulAn[numMulAn],neutnormAn[numSec];
222
223 // misc. local variables
224 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
225
226 G4int i, counter, nt, npos, nneg, nzero;
227
228 if( first )
229 { // compute normalization constants, this will only be done once
230 first = false;
231 for( i=0; i<numMul ; i++ ) protmul[i] = 0.0;
232 for( i=0; i<numSec ; i++ ) protnorm[i] = 0.0;
233 counter = -1;
234 for( npos=0; npos<(numSec/3); npos++ )
235 {
236 for( nneg=std::max(0,npos-2); nneg<=(npos+1); nneg++ )
237 {
238 for( nzero=0; nzero<numSec/3; nzero++ )
239 {
240 if( ++counter < numMul )
241 {
242 nt = npos+nneg+nzero;
243 if( (nt>0) && (nt<=numSec) )
244 {
245 protmul[counter] = pmltpc(npos,nneg,nzero,nt,protb,c);
246 protnorm[nt-1] += protmul[counter];
247 }
248 }
249 }
250 }
251 }
252 for( i=0; i<numMul; i++ )neutmul[i] = 0.0;
253 for( i=0; i<numSec; i++ )neutnorm[i] = 0.0;
254 counter = -1;
255 for( npos=0; npos<numSec/3; npos++ )
256 {
257 for( nneg=std::max(0,npos-1); nneg<=(npos+2); nneg++ )
258 {
259 for( nzero=0; nzero<numSec/3; nzero++ )
260 {
261 if( ++counter < numMul )
262 {
263 nt = npos+nneg+nzero;
264 if( (nt>0) && (nt<=numSec) )
265 {
266 neutmul[counter] = pmltpc(npos,nneg,nzero,nt,neutb,c);
267 neutnorm[nt-1] += neutmul[counter];
268 }
269 }
270 }
271 }
272 }
273 for( i=0; i<numSec; i++ )
274 {
275 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
276 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
277 }
278 // annihilation
279 for( i=0; i<numMulAn ; i++ ) protmulAn[i] = 0.0;
280 for( i=0; i<numSec ; i++ ) protnormAn[i] = 0.0;
281 counter = -1;
282 for( npos=1; npos<(numSec/3); npos++ )
283 {
284 nneg = std::max(0,npos-1);
285 for( nzero=0; nzero<numSec/3; nzero++ )
286 {
287 if( ++counter < numMulAn )
288 {
289 nt = npos+nneg+nzero;
290 if( (nt>1) && (nt<=numSec) )
291 {
292 protmulAn[counter] = pmltpc(npos,nneg,nzero,nt,protb,c);
293 protnormAn[nt-1] += protmulAn[counter];
294 }
295 }
296 }
297 }
298 for( i=0; i<numMulAn; i++ ) neutmulAn[i] = 0.0;
299 for( i=0; i<numSec; i++ ) neutnormAn[i] = 0.0;
300 counter = -1;
301 for( npos=0; npos<numSec/3; npos++ )
302 {
303 nneg = npos;
304 for( nzero=0; nzero<numSec/3; nzero++ )
305 {
306 if( ++counter < numMulAn )
307 {
308 nt = npos+nneg+nzero;
309 if( (nt>1) && (nt<=numSec) )
310 {
311 neutmulAn[counter] = pmltpc(npos,nneg,nzero,nt,neutb,c);
312 neutnormAn[nt-1] += neutmulAn[counter];
313 }
314 }
315 }
316 }
317 for( i=0; i<numSec; i++ )
318 {
319 if( protnormAn[i] > 0.0 )protnormAn[i] = 1.0/protnormAn[i];
320 if( neutnormAn[i] > 0.0 )neutnormAn[i] = 1.0/neutnormAn[i];
321 }
322 } // end of initialization
323
324
325 // initialize the first two places
326 // the same as beam and target
327 pv[0] = incidentParticle;
328 pv[1] = targetParticle;
329 vecLen = 2;
330
331 if( !inElastic )
332 { // some two-body reactions
333 G4double cech[] = {0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.06, 0.04, 0.005, 0.};
334
335 G4int iplab = std::min(9, G4int( incidentTotalMomentum*2.5));
336 if( G4UniformRand() < cech[iplab]/std::pow(atomicWeight,0.42) )
337 {
338 G4double ran = G4UniformRand();
339
340 if ( targetCode == protonCode)
341 {
342 if(ran < 0.2)
343 {
344 pv[0] = AntiSigmaZero;
345 }
346 else if (ran < 0.4)
347 {
348 pv[0] = AntiSigmaMinus;
349 pv[1] = Neutron;
350 }
351 else if (ran < 0.6)
352 {
353 pv[0] = Proton;
354 pv[1] = AntiLambda;
355 }
356 else if (ran < 0.8)
357 {
358 pv[0] = Proton;
359 pv[1] = AntiSigmaZero;
360 }
361 else
362 {
363 pv[0] = Neutron;
364 pv[1] = AntiSigmaMinus;
365 }
366 }
367 else
368 {
369 if (ran < 0.2)
370 {
371 pv[0] = AntiSigmaZero;
372 }
373 else if (ran < 0.4)
374 {
375 pv[0] = AntiSigmaPlus;
376 pv[1] = Proton;
377 }
378 else if (ran < 0.6)
379 {
380 pv[0] = Neutron;
381 pv[1] = AntiLambda;
382 }
383 else if (ran < 0.8)
384 {
385 pv[0] = Neutron;
386 pv[1] = AntiSigmaZero;
387 }
388 else
389 {
390 pv[0] = Proton;
391 pv[1] = AntiSigmaPlus;
392 }
393 }
394 }
395 return;
396 }
397 else if (availableEnergy <= PionPlus.getMass())
398 return;
399
400 // inelastic scattering
401
402 npos = 0; nneg = 0; nzero = 0;
403 G4double anhl[] = {1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 0.97, 0.88,
404 0.85, 0.81, 0.75, 0.64, 0.64, 0.55, 0.55, 0.45, 0.47, 0.40,
405 0.39, 0.36, 0.33, 0.10, 0.01};
406 G4int iplab = G4int( incidentTotalMomentum*10.);
407 if ( iplab > 9) iplab = 10 + G4int( (incidentTotalMomentum -1.)*5. );
408 if ( iplab > 14) iplab = 15 + G4int( incidentTotalMomentum -2. );
409 if ( iplab > 22) iplab = 23 + G4int( (incidentTotalMomentum -10.)/10.);
410 iplab = std::min(24, iplab);
411
412 if ( G4UniformRand() > anhl[iplab] )
413 { // non- annihilation channels
414
415 // number of total particles vs. centre of mass Energy - 2*proton mass
416
417 G4double aleab = std::log(availableEnergy);
418 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
419 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
420
421 // normalization constant for kno-distribution.
422 // calculate first the sum of all constants, check for numerical problems.
423 G4double test, dum, anpn = 0.0;
424
425 for (nt=1; nt<=numSec; nt++) {
426 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
427 dum = pi*nt/(2.0*n*n);
428 if (std::fabs(dum) < 1.0) {
429 if( test >= 1.0e-10 )anpn += dum*test;
430 } else {
431 anpn += dum*test;
432 }
433 }
434
435 G4double ran = G4UniformRand();
436 G4double excs = 0.0;
437 if( targetCode == protonCode )
438 {
439 counter = -1;
440 for( npos=0; npos<numSec/3; npos++ )
441 {
442 for( nneg=std::max(0,npos-2); nneg<=(npos+1); nneg++ )
443 {
444 for( nzero=0; nzero<numSec/3; nzero++ )
445 {
446 if( ++counter < numMul )
447 {
448 nt = npos+nneg+nzero;
449 if ( (nt>0) && (nt<=numSec) ) {
450 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
451 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
452 if (std::fabs(dum) < 1.0) {
453 if( test >= 1.0e-10 )excs += dum*test;
454 } else {
455 excs += dum*test;
456 }
457
458 if (ran < excs) goto outOfLoop; //----------------------->
459 }
460 }
461 }
462 }
463 }
464
465 // 3 previous loops continued to the end
466 inElastic = false; // quasi-elastic scattering
467 return;
468 }
469 else
470 { // target must be a neutron
471 counter = -1;
472 for( npos=0; npos<numSec/3; npos++ )
473 {
474 for( nneg=std::max(0,npos-1); nneg<=(npos+2); nneg++ )
475 {
476 for( nzero=0; nzero<numSec/3; nzero++ )
477 {
478 if( ++counter < numMul )
479 {
480 nt = npos+nneg+nzero;
481 if ( (nt>0) && (nt<=numSec) ) {
482 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
483 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
484 if (std::fabs(dum) < 1.0) {
485 if( test >= 1.0e-10 )excs += dum*test;
486 } else {
487 excs += dum*test;
488 }
489
490 if (ran < excs) goto outOfLoop; // -------------------------->
491 }
492 }
493 }
494 }
495 }
496 // 3 previous loops continued to the end
497 inElastic = false; // quasi-elastic scattering.
498 return;
499 }
500
501 outOfLoop: // <------------------------------------------------------------------------
502
503 ran = G4UniformRand();
504
505 if( targetCode == protonCode)
506 {
507 if( npos == nneg)
508 {
509 if (ran < 0.40)
510 {
511 }
512 else if (ran < 0.8)
513 {
514 pv[0] = AntiSigmaZero;
515 }
516 else
517 {
518 pv[0] = AntiSigmaMinus;
519 pv[1] = Neutron;
520 }
521 }
522 else if (npos == (nneg+1))
523 {
524 if( ran < 0.25)
525 {
526 pv[1] = Neutron;
527 }
528 else if (ran < 0.5)
529 {
530 pv[0] = AntiSigmaZero;
531 pv[1] = Neutron;
532 }
533 else
534 {
535 pv[0] = AntiSigmaPlus;
536 }
537 }
538 else if (npos == (nneg-1))
539 {
540 pv[0] = AntiSigmaMinus;
541 }
542 else
543 {
544 pv[0] = AntiSigmaPlus;
545 pv[1] = Neutron;
546 }
547 }
548 else
549 {
550 if( npos == nneg)
551 {
552 if (ran < 0.4)
553 {
554 }
555 else if(ran < 0.8)
556 {
557 pv[0] = AntiSigmaZero;
558 }
559 else
560 {
561 pv[0] = AntiSigmaPlus;
562 pv[1] = Proton;
563 }
564 }
565 else if ( npos == (nneg-1))
566 {
567 if (ran < 0.5)
568 {
569 pv[0] = AntiSigmaMinus;
570 }
571 else if (ran < 0.75)
572 {
573 pv[1] = Proton;
574 }
575 else
576 {
577 pv[0] = AntiSigmaZero;
578 pv[1] = Proton;
579 }
580 }
581 else if (npos == (nneg+1))
582 {
583 pv[0] = AntiSigmaPlus;
584 }
585 else
586 {
587 pv[0] = AntiSigmaMinus;
588 pv[1] = Proton;
589 }
590 }
591
592 }
593 else // annihilation
594 {
595 if ( availableEnergy > 2. * PionPlus.getMass() )
596 {
597
598 G4double aleab = std::log(availableEnergy);
599 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
600 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
601
602 // normalization constant for kno-distribution.
603 // calculate first the sum of all constants, check for numerical problems.
604 G4double test, dum, anpn = 0.0;
605
606 for (nt=2; nt<=numSec; nt++) {
607 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
608 dum = pi*nt/(2.0*n*n);
609 if (std::fabs(dum) < 1.0) {
610 if( test >= 1.0e-10 )anpn += dum*test;
611 } else {
612 anpn += dum*test;
613 }
614 }
615
616 G4double ran = G4UniformRand();
617 G4double excs = 0.0;
618 if( targetCode == protonCode )
619 {
620 counter = -1;
621 for( npos=1; npos<numSec/3; npos++ )
622 {
623 nneg = npos-1;
624 for( nzero=0; nzero<numSec/3; nzero++ )
625 {
626 if( ++counter < numMulAn )
627 {
628 nt = npos+nneg+nzero;
629 if ( (nt>1) && (nt<=numSec) ) {
630 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
631 dum = (pi/anpn)*nt*protmulAn[counter]*protnormAn[nt-1]/(2.0*n*n);
632 if (std::fabs(dum) < 1.0) {
633 if( test >= 1.0e-10 )excs += dum*test;
634 } else {
635 excs += dum*test;
636 }
637
638 if (ran < excs) goto outOfLoopAn; //----------------------->
639 }
640 }
641 }
642 }
643 // 3 previous loops continued to the end
644 inElastic = false; // quasi-elastic scattering
645 return;
646 }
647 else
648 { // target must be a neutron
649 counter = -1;
650 for( npos=0; npos<numSec/3; npos++ )
651 {
652 nneg = npos;
653 for( nzero=0; nzero<numSec/3; nzero++ )
654 {
655 if( ++counter < numMulAn )
656 {
657 nt = npos+nneg+nzero;
658 if ( (nt>1) && (nt<=numSec) ) {
659 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
660 dum = (pi/anpn)*nt*neutmulAn[counter]*neutnormAn[nt-1]/(2.0*n*n);
661 if (std::fabs(dum) < 1.0) {
662 if( test >= 1.0e-10 )excs += dum*test;
663 } else {
664 excs += dum*test;
665 }
666
667 if (ran < excs) goto outOfLoopAn; // -------------------------->
668 }
669 }
670 }
671 }
672 inElastic = false; // quasi-elastic scattering.
673 return;
674 }
675 outOfLoopAn: // <----------------------------------------
676 vecLen = 0;
677 }
678 }
679
680 nt = npos + nneg + nzero;
681 while ( nt > 0)
682 {
683 G4double ran = G4UniformRand();
684 if ( ran < (G4double)npos/nt)
685 {
686 if( npos > 0 )
687 { pv[vecLen++] = PionPlus;
688 npos--;
689 }
690 }
691 else if ( ran < (G4double)(npos+nneg)/nt)
692 {
693 if( nneg > 0 )
694 {
695 pv[vecLen++] = PionMinus;
696 nneg--;
697 }
698 }
699 else
700 {
701 if( nzero > 0 )
702 {
703 pv[vecLen++] = PionZero;
704 nzero--;
705 }
706 }
707 nt = npos + nneg + nzero;
708 }
709 if (verboseLevel > 1)
710 {
711 G4cout << "Particles produced: " ;
712 G4cout << pv[0].getName() << " " ;
713 G4cout << pv[1].getName() << " " ;
714 for (i=2; i < vecLen; i++)
715 {
716 G4cout << pv[i].getName() << " " ;
717 }
718 G4cout << G4endl;
719 }
720 return;
721 }
722
723
724
725
726
727
728
729
730
731
@ stopAndKill
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
void FirstIntInCasAntiXiMinus(G4bool &inElastic, const G4double availableEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, const G4double atomicWeight)
virtual void ModelDescription(std::ostream &) const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4HEVector PionPlus
G4HEVector AntiSigmaZero
G4double pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
G4HEVector AntiSigmaPlus
void MediumEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
void ElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, G4double atomicWeight, G4double atomicNumber)
void QuasiElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector Neutron
void FillParticleChange(G4HEVector pv[], G4int aVecLength)
G4HEVector PionMinus
void HighEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector PionZero
G4double NuclearExcitation(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber, G4double &excitationEnergyCascade, G4double &excitationEnergyEvaporation)
G4HEVector AntiSigmaMinus
G4HEVector AntiLambda
G4HEVector Proton
void MediumEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4double NuclearInelasticity(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber)
void StrangeParticlePairProduction(const G4double availableEnergy, const G4double centerOfMassEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle)
void HighEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4double getEnergy() const
Definition: G4HEVector.cc:313
G4double getMass() const
Definition: G4HEVector.cc:361
G4int getCode() const
Definition: G4HEVector.cc:426
G4double getTotalMomentum() const
Definition: G4HEVector.cc:166
G4String getName() const
Definition: G4HEVector.cc:431
void setDefinition(G4String name)
Definition: G4HEVector.cc:812
void SetStatusChange(G4HadFinalStateStatus aS)
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115