Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4HadronElasticProcess.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// Geant4 Hadron Elastic Scattering Process
29//
30// Created 26 July 2012 V.Ivanchenko from G4WHadronElasticProcess
31//
32// Modified:
33// 14-Sep-12 M.Kelsey -- Pass subType code to base ctor
34
35#include <iostream>
36#include <typeinfo>
37
39#include "G4SystemOfUnits.hh"
40#include "G4Nucleus.hh"
41#include "G4ProcessManager.hh"
47
49 : G4HadronicProcess(pName, fHadronElastic), isInitialised(false)
50{
52 lowestEnergy = 1.*keV;
53}
54
56{}
57
59{
60 char* dirName = getenv("G4PhysListDocDir");
61 if (dirName) {
62 std::ofstream outFile;
63 G4String outFileName = GetProcessName() + ".html";
64 G4String pathName = G4String(dirName) + "/" + outFileName;
65 outFile.open(pathName);
66 outFile << "<html>\n";
67 outFile << "<head>\n";
68
69 outFile << "<title>Description of G4HadronElasticProcess</title>\n";
70 outFile << "</head>\n";
71 outFile << "<body>\n";
72
73 outFile << "G4HadronElasticProcess handles the elastic scattering of\n"
74 << "hadrons by invoking one or more hadronic models and one or\n"
75 << "more hadronic cross sections.\n";
76
77 outFile << "</body>\n";
78 outFile << "</html>\n";
79 outFile.close();
80 }
81}
82
85 const G4Step& /*step*/)
86{
89 G4double weight = track.GetWeight();
91
92 // For elastic scattering, _any_ result is considered an interaction
94
95 G4double kineticEnergy = track.GetKineticEnergy();
96 const G4DynamicParticle* dynParticle = track.GetDynamicParticle();
97 const G4ParticleDefinition* part = dynParticle->GetDefinition();
98
99 // NOTE: Very low energy scatters were causing numerical (FPE) errors
100 // in earlier releases; these limits have not been changed since.
101 if (kineticEnergy <= lowestEnergy) return theTotalResult;
102
103 G4Material* material = track.GetMaterial();
104 G4Nucleus* targNucleus = GetTargetNucleusPointer();
105
106 // Select element
107 G4Element* elm = 0;
108 try
109 {
110 elm = GetCrossSectionDataStore()->SampleZandA(dynParticle, material,
111 *targNucleus);
112 }
113 catch(G4HadronicException & aR)
114 {
116 DumpState(track,"SampleZandA",ed);
117 ed << " PostStepDoIt failed on element selection" << G4endl;
118 G4Exception("G4HadronElasticProcess::PostStepDoIt", "had003",
119 FatalException, ed);
120 }
121 G4HadronicInteraction* hadi = 0;
122 try
123 {
124 hadi = ChooseHadronicInteraction( kineticEnergy, material, elm );
125 }
126 catch(G4HadronicException & aE)
127 {
129 ed << "Target element "<< elm->GetName()<<" Z= "
130 << targNucleus->GetZ_asInt() << " A= "
131 << targNucleus->GetA_asInt() << G4endl;
132 DumpState(track,"ChooseHadronicInteraction",ed);
133 ed << " No HadronicInteraction found out" << G4endl;
134 G4Exception("G4HadronElasticProcess::PostStepDoIt", "had005",
135 FatalException, ed);
136 }
137
138 size_t idx = track.GetMaterialCutsCouple()->GetIndex();
140 ->GetEnergyCutsVector(3)))[idx];
141 hadi->SetRecoilEnergyThreshold(tcut);
142
143 // Initialize the hadronic projectile from the track
144 // G4cout << "track " << track.GetDynamicParticle()->Get4Momentum()<<G4endl;
145 G4HadProjectile theProj(track);
146 if(verboseLevel>1) {
147 G4cout << "G4HadronElasticProcess::PostStepDoIt for "
148 << part->GetParticleName()
149 << " in " << material->GetName()
150 << " Target Z= " << targNucleus->GetZ_asInt()
151 << " A= " << targNucleus->GetA_asInt() << G4endl;
152 }
153
154 G4HadFinalState* result = 0;
155 try
156 {
157 result = hadi->ApplyYourself( theProj, *targNucleus);
158 }
159 catch(G4HadronicException aR)
160 {
162 ed << "Call for " << hadi->GetModelName() << G4endl;
163 ed << "Target element "<< elm->GetName()<<" Z= "
164 << targNucleus->GetZ_asInt()
165 << " A= " << targNucleus->GetA_asInt() << G4endl;
166 DumpState(track,"ApplyYourself",ed);
167 ed << " ApplyYourself failed" << G4endl;
168 G4Exception("G4HadronElasticProcess::PostStepDoIt", "had006",
169 FatalException, ed);
170 }
171
172 // Check the result for catastrophic energy non-conservation
173 // cannot be applied because is not guranteed that recoil
174 // nucleus is created
175 // result = CheckResult(theProj, targNucleus, result);
176
177 // directions
178 G4ThreeVector indir = track.GetMomentumDirection();
179 G4double phi = CLHEP::twopi*G4UniformRand();
180 G4ThreeVector it(0., 0., 1.);
181 G4ThreeVector outdir = result->GetMomentumChange();
182
183 if(verboseLevel>1) {
184 G4cout << "Efin= " << result->GetEnergyChange()
185 << " de= " << result->GetLocalEnergyDeposit()
186 << " nsec= " << result->GetNumberOfSecondaries()
187 << " dir= " << outdir
188 << G4endl;
189 }
190
191 // energies
192 G4double edep = result->GetLocalEnergyDeposit();
193 G4double efinal = result->GetEnergyChange();
194 if(efinal < 0.0) { efinal = 0.0; }
195 if(edep < 0.0) { edep = 0.0; }
196
197 // NOTE: Very low energy scatters were causing numerical (FPE) errors
198 // in earlier releases; these limits have not been changed since.
199 if(efinal <= lowestEnergy) {
200 edep += efinal;
201 efinal = 0.0;
202 }
203
204 // primary change
206
207 G4TrackStatus status = track.GetTrackStatus();
208 if(efinal > 0.0) {
209 outdir.rotate(phi, it);
210 outdir.rotateUz(indir);
212 } else {
213 if(part->GetProcessManager()->GetAtRestProcessVector()->size() > 0)
214 { status = fStopButAlive; }
215 else { status = fStopAndKill; }
217 }
218
219 //G4cout << "Efinal= " << efinal << " TrackStatus= " << status << G4endl;
220
222
223 // recoil
224 if(result->GetNumberOfSecondaries() > 0) {
225 G4DynamicParticle* p = result->GetSecondary(0)->GetParticle();
226
227 if(p->GetKineticEnergy() > tcut) {
230 // G4cout << "recoil " << pdir << G4endl;
231 //!! is not needed for models inheriting G4HadronElastic
232 pdir.rotate(phi, it);
233 pdir.rotateUz(indir);
234 // G4cout << "recoil rotated " << pdir << G4endl;
235 p->SetMomentumDirection(pdir);
236
237 // in elastic scattering time and weight are not changed
238 G4Track* t = new G4Track(p, track.GetGlobalTime(),
239 track.GetPosition());
240 t->SetWeight(weight);
243
244 } else {
245 edep += p->GetKineticEnergy();
246 delete p;
247 }
248 }
251 result->Clear();
252
253 return theTotalResult;
254}
255
256void
258{
259 if(!isInitialised) {
260 isInitialised = true;
261 if(G4Neutron::Neutron() == &part) { lowestEnergy = 1.e-6*eV; }
262 }
264}
265
267{
268 lowestEnergy = val;
269}
270
271void
273{
274 lowestEnergy = val;
275 G4HadronicDeprecate("G4HadronElasticProcess::SetLowestEnergyNeutron()");
276}
277
@ FatalException
#define G4HadronicDeprecate(name)
@ fHadronElastic
G4TrackStatus
@ fStopAndKill
@ fStopButAlive
double G4double
Definition: G4Types.hh:64
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
Hep3Vector & rotate(double, const Hep3Vector &)
Definition: ThreeVectorR.cc:28
G4Element * SampleZandA(const G4DynamicParticle *, const G4Material *, G4Nucleus &target)
void SetMomentumDirection(const G4ThreeVector &aDirection)
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4String & GetName() const
Definition: G4Element.hh:127
G4double GetEnergyChange() const
G4double GetLocalEnergyDeposit() const
G4int GetNumberOfSecondaries() const
const G4ThreeVector & GetMomentumChange() const
G4HadSecondary * GetSecondary(size_t i)
G4DynamicParticle * GetParticle()
virtual void Description() const
virtual void PreparePhysicsTable(const G4ParticleDefinition &)
virtual G4VParticleChange * PostStepDoIt(const G4Track &aTrack, const G4Step &aStep)
G4HadronElasticProcess(const G4String &procName="hadElastic")
virtual void SetLowestEnergy(G4double)
virtual void SetLowestEnergyNeutron(G4double)
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)=0
const G4String & GetModelName() const
void SetRecoilEnergyThreshold(G4double val)
G4Nucleus * GetTargetNucleusPointer()
G4ParticleChange * theTotalResult
void AddDataSet(G4VCrossSectionDataSet *aDataSet)
G4CrossSectionDataStore * GetCrossSectionDataStore()
G4HadronicInteraction * ChooseHadronicInteraction(G4double kineticEnergy, G4Material *aMaterial, G4Element *anElement)
void DumpState(const G4Track &, const G4String &, G4ExceptionDescription &)
virtual void PreparePhysicsTable(const G4ParticleDefinition &)
const G4String & GetName() const
Definition: G4Material.hh:177
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
void AddSecondary(G4Track *aSecondary)
void ProposeEnergy(G4double finalEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
virtual void Initialize(const G4Track &)
G4ProcessManager * GetProcessManager() const
const G4String & GetParticleName() const
G4ProcessVector * GetAtRestProcessVector(G4ProcessVectorTypeIndex typ=typeGPIL) const
G4int size() const
const std::vector< G4double > * GetEnergyCutsVector(size_t pcIdx) const
static G4ProductionCutsTable * GetProductionCutsTable()
Definition: G4Step.hh:78
G4TrackStatus GetTrackStatus() const
G4double GetWeight() const
void SetWeight(G4double aValue)
const G4ThreeVector & GetPosition() const
void SetTouchableHandle(const G4TouchableHandle &apValue)
G4double GetGlobalTime() const
G4Material * GetMaterial() const
const G4DynamicParticle * GetDynamicParticle() const
const G4TouchableHandle & GetTouchableHandle() const
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
const G4MaterialCutsCouple * GetMaterialCutsCouple() const
void ProposeTrackStatus(G4TrackStatus status)
void ProposeNonIonizingEnergyDeposit(G4double anEnergyPart)
void ProposeWeight(G4double finalWeight)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
void SetNumberOfSecondaries(G4int totSecondaries)
void ClearNumberOfInteractionLengthLeft()
Definition: G4VProcess.hh:418
G4int verboseLevel
Definition: G4VProcess.hh:368
const G4String & GetProcessName() const
Definition: G4VProcess.hh:379
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
std::ostringstream G4ExceptionDescription
Definition: globals.hh:76