Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4HEProtonInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28
29// G4 Process: Gheisha High Energy Collision model.
30// This includes the high energy cascading model, the two-body-resonance model
31// and the low energy two-body model. Not included are the low energy stuff
32// like nuclear reactions, nuclear fission without any cascading and all
33// processes for particles at rest.
34// First work done by J.L.Chuma and F.W.Jones, TRIUMF, June 96.
35// H. Fesefeldt, RWTH-Aachen, 23-October-1996
36
38#include "globals.hh"
39#include "G4ios.hh"
41
42void G4HEProtonInelastic::ModelDescription(std::ostream& outFile) const
43{
44 outFile << "G4HEProtonInelastic is one of the High Energy\n"
45 << "Parameterized (HEP) models used to implement inelastic\n"
46 << "proton scattering from nuclei. It is a re-engineered\n"
47 << "version of the GHEISHA code of H. Fesefeldt. It divides the\n"
48 << "initial collision products into backward- and forward-going\n"
49 << "clusters which are then decayed into final state hadrons.\n"
50 << "The model does not conserve energy on an event-by-event\n"
51 << "basis. It may be applied to protons with initial energies\n"
52 << "above 20 GeV.\n";
53}
54
55
58 G4Nucleus& targetNucleus)
59{
60 G4HEVector* pv = new G4HEVector[MAXPART];
61 const G4HadProjectile* aParticle = &aTrack;
62 const G4double A = targetNucleus.GetA_asInt();
63 const G4double Z = targetNucleus.GetZ_asInt();
64 G4HEVector incidentParticle(aParticle);
65
66 G4double atomicNumber = Z;
67 G4double atomicWeight = A;
68
69 if (verboseLevel > 1)
70 G4cout << "Z , A = " << atomicNumber << " " << atomicWeight << G4endl;
71
72 G4int incidentCode = incidentParticle.getCode();
73 G4double incidentMass = incidentParticle.getMass();
74 G4double incidentTotalEnergy = incidentParticle.getEnergy();
75
76 // G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
77 // DHW 19 May 2011: variable set but not used
78
79 G4double incidentKineticEnergy = incidentParticle.getKineticEnergy();
80
81 if (incidentKineticEnergy < 1.)
82 G4cout << "GHEProtonInelastic: incident energy < 1 GeV" << G4endl;
83
84 if (verboseLevel > 1) {
85 G4cout << "G4HEProtonInelastic::ApplyYourself" << G4endl;
86 G4cout << "incident particle " << incidentParticle.getName() << " "
87 << "mass " << incidentMass << " "
88 << "kinetic energy " << incidentKineticEnergy
89 << G4endl;
90 G4cout << "target material with (A,Z) = ("
91 << atomicWeight << "," << atomicNumber << ")" << G4endl;
92 }
93
94 G4double inelasticity = NuclearInelasticity(incidentKineticEnergy,
95 atomicWeight, atomicNumber);
96 if (verboseLevel > 1)
97 G4cout << "nuclear inelasticity = " << inelasticity << G4endl;
98
99 incidentKineticEnergy -= inelasticity;
100
101 G4double excitationEnergyGNP = 0.;
102 G4double excitationEnergyDTA = 0.;
103
104 G4double excitation = NuclearExcitation(incidentKineticEnergy,
105 atomicWeight, atomicNumber,
106 excitationEnergyGNP,
107 excitationEnergyDTA);
108
109 if (verboseLevel > 1)
110 G4cout << "nuclear excitation = " << excitation << " "
111 << excitationEnergyGNP << " " << excitationEnergyDTA << G4endl;
112
113 incidentKineticEnergy -= excitation;
114 incidentTotalEnergy = incidentKineticEnergy + incidentMass;
115 // incidentTotalMomentum = std::sqrt( (incidentTotalEnergy-incidentMass)
116 // *(incidentTotalEnergy+incidentMass));
117 // DHW 19 May 2011: variable set but not used
118
119 G4HEVector targetParticle;
120 if (G4UniformRand() < atomicNumber/atomicWeight) {
121 targetParticle.setDefinition("Proton");
122 } else {
123 targetParticle.setDefinition("Neutron");
124 }
125
126 G4double targetMass = targetParticle.getMass();
127 G4double centerOfMassEnergy = std::sqrt(incidentMass*incidentMass
128 + targetMass*targetMass
129 + 2.0*targetMass*incidentTotalEnergy);
130 G4double availableEnergy = centerOfMassEnergy - targetMass - incidentMass;
131
132 // In the original Gheisha code, the inElastic flag was defined as follows:
133 // G4bool inElastic = InElasticCrossSectionInFirstInt
134 // (availableEnergy, incidentCode, incidentTotalMomentum);
135 // For unknown reasons, it was replaced by the following code in Geant???
136
137 G4bool inElastic = true;
138 // if (G4UniformRand() < elasticCrossSection/totalCrossSection) inElastic = false;
139
140 vecLength = 0;
141
142 if (verboseLevel > 1)
143 G4cout << "ApplyYourself: CallFirstIntInCascade for particle "
144 << incidentCode << G4endl;
145
146 G4bool successful = false;
147
148 FirstIntInCasProton(inElastic, availableEnergy, pv, vecLength,
149 incidentParticle, targetParticle, atomicWeight);
150
151 if (verboseLevel > 1)
152 G4cout << "ApplyYourself::StrangeParticlePairProduction" << G4endl;
153
154 if ((vecLength > 0) && (availableEnergy > 1.))
155 StrangeParticlePairProduction(availableEnergy, centerOfMassEnergy,
156 pv, vecLength,
157 incidentParticle, targetParticle);
158
159 HighEnergyCascading(successful, pv, vecLength,
160 excitationEnergyGNP, excitationEnergyDTA,
161 incidentParticle, targetParticle,
162 atomicWeight, atomicNumber);
163 if (!successful)
165 excitationEnergyGNP, excitationEnergyDTA,
166 incidentParticle, targetParticle,
167 atomicWeight, atomicNumber);
168 if (!successful)
169 MediumEnergyCascading(successful, pv, vecLength,
170 excitationEnergyGNP, excitationEnergyDTA,
171 incidentParticle, targetParticle,
172 atomicWeight, atomicNumber);
173
174 if (!successful)
176 excitationEnergyGNP, excitationEnergyDTA,
177 incidentParticle, targetParticle,
178 atomicWeight, atomicNumber);
179 if (!successful)
180 QuasiElasticScattering(successful, pv, vecLength,
181 excitationEnergyGNP, excitationEnergyDTA,
182 incidentParticle, targetParticle,
183 atomicWeight, atomicNumber);
184 if (!successful)
185 ElasticScattering(successful, pv, vecLength,
186 incidentParticle,
187 atomicWeight, atomicNumber);
188
189 if (!successful)
190 G4cout << "GHEInelasticInteraction::ApplyYourself fails to produce final state particles"
191 << G4endl;
192
194 delete [] pv;
196 return &theParticleChange;
197}
198
199
200void
202 const G4double availableEnergy,
203 G4HEVector pv[],
204 G4int& vecLen,
205 const G4HEVector& incidentParticle,
206 const G4HEVector& targetParticle,
207 const G4double atomicWeight)
208
209// Proton undergoes interaction with nucleon within a nucleus. Check if it is
210// energetically possible to produce pions/kaons. In not, assume nuclear excitation
211// occurs and input particle is degraded in energy. No other particles are produced.
212// If reaction is possible, find the correct number of pions/protons/neutrons
213// produced using an interpolation to multiplicity data. Replace some pions or
214// protons/neutrons by kaons or strange baryons according to the average
215// multiplicity per inelastic reaction.
216{
217 static const G4double expxu = 82.; // upper bound for arg. of exp
218 static const G4double expxl = -expxu; // lower bound for arg. of exp
219
220 static const G4double protb = 0.7;
221 static const G4double neutb = 0.35;
222 static const G4double c = 1.25;
223
224 static const G4int numMul = 1200;
225 static const G4int numSec = 60;
226
228 G4int protonCode = Proton.getCode();
229 G4double pionMass = PionPlus.getMass();
230
231 G4int targetCode = targetParticle.getCode();
232 G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
233
234 static G4bool first = true;
235 static G4double protmul[numMul], protnorm[numSec]; // proton constants
236 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
237
238 // misc. local variables
239 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
240
241 G4int i, counter, nt, npos, nneg, nzero;
242
243 if (first) {
244 // compute normalization constants, this will only be done once
245 first = false;
246 for (i=0; i<numMul; i++) protmul[i] = 0.0;
247 for (i=0; i<numSec; i++) protnorm[i] = 0.0;
248 counter = -1;
249 for (npos=0; npos<(numSec/3); npos++) {
250 for (nneg=Imax(0,npos-2); nneg<=npos; nneg++) {
251 for (nzero=0; nzero<numSec/3; nzero++) {
252 if (++counter < numMul) {
253 nt = npos+nneg+nzero;
254 if ( (nt>0) && (nt<=numSec) ) {
255 protmul[counter] = pmltpc(npos,nneg,nzero,nt,protb,c)
256 /(Factorial(2-npos+nneg)*Factorial(npos-nneg)) ;
257 protnorm[nt-1] += protmul[counter];
258 }
259 }
260 }
261 }
262 }
263
264 for( i=0; i<numMul; i++ )neutmul[i] = 0.0;
265 for( i=0; i<numSec; i++ )neutnorm[i] = 0.0;
266 counter = -1;
267 for (npos=0; npos<numSec/3; npos++) {
268 for (nneg=Imax(0,npos-1); nneg<=(npos+1); nneg++) {
269 for (nzero=0; nzero<numSec/3; nzero++) {
270 if (++counter < numMul) {
271 nt = npos+nneg+nzero;
272 if ( (nt>0) && (nt<=numSec) ) {
273 neutmul[counter] = pmltpc(npos,nneg,nzero,nt,neutb,c)
274 /(Factorial(1-npos+nneg)*Factorial(1+npos-nneg));
275 neutnorm[nt-1] += neutmul[counter];
276 }
277 }
278 }
279 }
280 }
281 for (i=0; i<numSec; i++) {
282 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
283 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
284 }
285 } // end of initialization
286
287
288 // initialize the first two places
289 // the same as beam and target
290 pv[0] = incidentParticle;
291 pv[1] = targetParticle;
292 vecLen = 2;
293
294 if (!inElastic) { // quasi-elastic scattering, no pions produced
295 if (targetCode == neutronCode) {
296 G4double cech[] = {0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.06, 0.04, 0.005, 0.};
297 G4int iplab = G4int( Amin( 9.0, incidentTotalMomentum*2.5 ) );
298 if (G4UniformRand() < cech[iplab]/std::pow(atomicWeight,0.42) ) {
299 // charge exchange pi+ n -> pi0 p
300 pv[0] = PionZero;
301 pv[1] = Proton;
302 }
303 }
304 return;
305 } else if (availableEnergy <= pionMass) return;
306
307 // inelastic scattering
308 npos = 0, nneg = 0, nzero = 0;
309 G4double eab = availableEnergy;
310 G4int ieab = G4int( eab*5.0 );
311
312 G4double supp[] = {0., 0.4, 0.55, 0.65, 0.75, 0.82, 0.86, 0.90, 0.94, 0.98};
313 if ( (ieab <= 9) && (G4UniformRand() >= supp[ieab]) ) {
314 // suppress high multiplicity events at low momentum
315 // only one additional pion will be produced
316 G4double w0, wp, wm, wt, ran;
317 if (targetCode == protonCode) { // target is a proton
318 w0 = - sqr(1.+protb)/(2.*c*c);
319 wp = w0 = std::exp(w0);
320 if (G4UniformRand() < w0/(w0+wp) ) {
321 npos = 0;
322 nneg = 0;
323 nzero = 1;
324 } else {
325 npos = 1;
326 nneg = 0;
327 nzero = 0; }
328 } else { // target is a neutron
329 w0 = -sqr(1.+neutb)/(2.*c*c);
330 w0 = std::exp(w0);
331 wp = w0/2.;
332 wm = -sqr(-1.+neutb)/(2.*c*c);
333 wm = std::exp(wm)/2.;
334 wt = w0+wp+wm;
335 wp = w0+wp;
336 ran = G4UniformRand();
337 if( ran < w0/wt)
338 { npos = 0; nneg = 0; nzero = 1; }
339 else if( ran < wp/wt)
340 { npos = 1; nneg = 0; nzero = 0; }
341 else
342 { npos = 0; nneg = 1; nzero = 0; }
343 }
344 } else {
345 // number of total particles vs. centre of mass Energy - 2*proton mass
346
347 G4double aleab = std::log(availableEnergy);
348 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
349 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
350
351 // normalization constant for kno-distribution.
352 // calculate first the sum of all constants, check for numerical problems.
353 G4double test, dum, anpn = 0.0;
354
355 for (nt=1; nt<=numSec; nt++) {
356 test = std::exp( Amin( expxu, Amax( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
357 dum = pi*nt/(2.0*n*n);
358 if (std::fabs(dum) < 1.0) {
359 if( test >= 1.0e-10 )anpn += dum*test;
360 } else {
361 anpn += dum*test;
362 }
363 }
364
365 G4double ran = G4UniformRand();
366 G4double excs = 0.0;
367 if( targetCode == protonCode )
368 {
369 counter = -1;
370 for (npos=0; npos<numSec/3; npos++) {
371 for (nneg=Imax(0,npos-2); nneg<=npos; nneg++) {
372 for (nzero=0; nzero<numSec/3; nzero++) {
373 if (++counter < numMul) {
374 nt = npos+nneg+nzero;
375 if ( (nt>0) && (nt<=numSec) ) {
376 test = std::exp( Amin( expxu, Amax( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
377 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
378 if (std::fabs(dum) < 1.0) {
379 if( test >= 1.0e-10 )excs += dum*test;
380 } else {
381 excs += dum*test;
382 }
383 if (ran < excs) goto outOfLoop; //------------------>
384 }
385 }
386 }
387 }
388 }
389
390 // 3 previous loops continued to the end
391 inElastic = false; // quasi-elastic scattering
392 return;
393 }
394 else
395 { // target must be a neutron
396 counter = -1;
397 for (npos=0; npos<numSec/3; npos++) {
398 for (nneg=Imax(0,npos-1); nneg<=(npos+1); nneg++) {
399 for (nzero=0; nzero<numSec/3; nzero++) {
400 if (++counter < numMul) {
401 nt = npos+nneg+nzero;
402 if ( (nt>=1) && (nt<=numSec) ) {
403 test = std::exp( Amin( expxu, Amax( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
404 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
405 if (std::fabs(dum) < 1.0) {
406 if( test >= 1.0e-10 )excs += dum*test;
407 } else {
408 excs += dum*test;
409 }
410 if (ran < excs) goto outOfLoop; // ------------->
411 }
412 }
413 }
414 }
415 }
416 // 3 previous loops continued to the end
417 inElastic = false; // quasi-elastic scattering.
418 return;
419 }
420 }
421 outOfLoop: // <-----------------------------------------------
422
423 if( targetCode == protonCode)
424 {
425 if( npos == nneg)
426 {
427 }
428 else if (npos == (1+nneg))
429 {
430 if( G4UniformRand() < 0.5)
431 {
432 pv[1] = Neutron;
433 }
434 else
435 {
436 pv[0] = Neutron;
437 }
438 }
439 else
440 {
441 pv[0] = Neutron;
442 pv[1] = Neutron;
443 }
444 }
445 else
446 {
447 if( npos == nneg)
448 {
449 if( G4UniformRand() < 0.25)
450 {
451 pv[0] = Neutron;
452 pv[1] = Proton;
453 }
454 else
455 {
456 }
457 }
458 else if ( npos == (1+nneg))
459 {
460 pv[0] = Neutron;
461 }
462 else
463 {
464 pv[1] = Proton;
465 }
466 }
467
468
469 nt = npos + nneg + nzero;
470 while ( nt > 0)
471 {
472 G4double ran = G4UniformRand();
473 if ( ran < (G4double)npos/nt)
474 {
475 if( npos > 0 )
476 { pv[vecLen++] = PionPlus;
477 npos--;
478 }
479 }
480 else if ( ran < (G4double)(npos+nneg)/nt)
481 {
482 if( nneg > 0 )
483 {
484 pv[vecLen++] = PionMinus;
485 nneg--;
486 }
487 }
488 else
489 {
490 if( nzero > 0 )
491 {
492 pv[vecLen++] = PionZero;
493 nzero--;
494 }
495 }
496 nt = npos + nneg + nzero;
497 }
498 if (verboseLevel > 1)
499 {
500 G4cout << "Particles produced: " ;
501 G4cout << pv[0].getName() << " " ;
502 G4cout << pv[1].getName() << " " ;
503 for (i=2; i < vecLen; i++)
504 {
505 G4cout << pv[i].getName() << " " ;
506 }
507 G4cout << G4endl;
508 }
509 return;
510 }
511
512
513
514
515
516
517
518
519
@ stopAndKill
@ neutronCode
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
G4HEVector PionPlus
G4double pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
G4int Factorial(G4int n)
void MediumEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
void ElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, G4double atomicWeight, G4double atomicNumber)
G4double Amin(G4double a, G4double b)
void QuasiElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector Neutron
void FillParticleChange(G4HEVector pv[], G4int aVecLength)
G4HEVector PionMinus
G4double Amax(G4double a, G4double b)
void HighEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector PionZero
G4double NuclearExcitation(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber, G4double &excitationEnergyCascade, G4double &excitationEnergyEvaporation)
G4HEVector Proton
void MediumEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4int Imax(G4int a, G4int b)
G4double NuclearInelasticity(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber)
void StrangeParticlePairProduction(const G4double availableEnergy, const G4double centerOfMassEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle)
void HighEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
virtual void ModelDescription(std::ostream &) const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
void FirstIntInCasProton(G4bool &inElastic, const G4double availableEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, const G4double atomicWeight)
G4double getEnergy() const
Definition: G4HEVector.cc:313
G4double getMass() const
Definition: G4HEVector.cc:361
G4int getCode() const
Definition: G4HEVector.cc:426
G4double getTotalMomentum() const
Definition: G4HEVector.cc:166
G4double getKineticEnergy() const
Definition: G4HEVector.cc:318
G4String getName() const
Definition: G4HEVector.cc:431
void setDefinition(G4String name)
Definition: G4HEVector.cc:812
void SetStatusChange(G4HadFinalStateStatus aS)
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
T sqr(const T &x)
Definition: templates.hh:145