Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4AdjointSimManager.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28/////////////////////////////////////////////////////////////////////////////////
29// Class Name: G4AdjointSimManager.hh
30// Author: L. Desorgher
31// Organisation: SpaceIT GmbH
32// Contract: ESA contract 21435/08/NL/AT
33// Customer: ESA/ESTEC
34/////////////////////////////////////////////////////////////////////////////////
35//
36// CHANGE HISTORY
37// --------------
38// ChangeHistory:
39// -15-01-2007 creation by L. Desorgher
40// -March 2008 Redesigned as a non RunManager. L. Desorgher
41// -01-11-2009 Add the possibility to use user defined run, event, tracking, stepping,
42// and stacking actions during the adjoint tracking phase. L. Desorgher
43//
44//
45//
46//-------------------------------------------------------------
47// Documentation:
48// This class represents the Manager of an adjoint/reverse MC simulation.
49// An adjoint run is divided in a serie of alternative adjoint and forward tracking
50// of adjoint and normal particles.
51//
52// Reverse tracking phase:
53// -----------------------
54// An adjoint particle of a given type (adjoint_e-, adjoint_gamma,...) is first generated on the so called adjoint source
55// with a random energy (1/E distribution) and direction. The adjoint source is the
56// external surface of a user defined volume or of a user defined sphere. The adjoint
57// source should contain one or several sensitive volumes and should be small
58// compared to the entire geometry.
59// The user can set the min and max energy of the adjoint source. After its
60// generation the adjoint primary particle is tracked
61// bacward in the geometry till a user defined external surface (spherical or boundary of a volume)
62// or is killed before if it reaches a user defined upper energy limit that represents
63// the maximum energy of the external source. During the reverse tracking, reverse
64// processes take place where the adjoint particle being tracked can be either scattered
65// or transformed in another type of adjoint paticle. During the reverse tracking the
66// G4SimulationManager replaces the user defined Primary, Run, ... actions, by its own actions.
67//
68// Forward tracking phase
69// -----------------------
70// When an adjoint particle reaches the external surface its weight,type, position,
71// and directions are registered and a normal primary particle with a type equivalent to the last generated primary adjoint is
72// generated with the same energy, position but opposite direction and is tracked normally in the sensitive region as in a fwd MC simulation.
73// During this forward tracking phase the
74// event, stacking, stepping, tracking actions defined by the user for its general fwd application are used. By this clear separation between
75// adjoint and fwd tracking phases , the code of the user developed for a fwd simulation should be only slightly modified to adapt it for an adjoint
76// simulation. Indeed the computation of the signal is done by the same actions or classes that the one used in the fwd simulation mode.
77//
78// Modification to brought in a existing G4 application to use the ReverseMC method
79// -------------------------------
80// In order to be able to use the ReverseMC method in his simulation, the user should modify its code as such:
81// 1) Adapt its physics list to use ReverseProcesses for adjoint particles. An example of such physics list is provided in an extended
82// example.
83// 2) Create an instance of G4AdjointSimManager somewhere in the main code.
84// 3) Modify the analysis part of the code to normalise the signal computed during the fwd phase to the weight of the last adjoint particle
85// that reaches the external surface. This is done by using the following method of G4AdjointSimManager.
86//
87// G4int GetIDOfLastAdjParticleReachingExtSource()
88// G4ThreeVector GetPositionAtEndOfLastAdjointTrack(){ return last_pos;}
89// G4ThreeVector GetDirectionAtEndOfLastAdjointTrack(){ return last_direction;}
90// G4double GetEkinAtEndOfLastAdjointTrack(){ return last_ekin;}
91// G4double GetEkinNucAtEndOfLastAdjointTrack(){ return last_ekin_nuc;}
92// G4double GetWeightAtEndOfLastAdjointTrack(){return last_weight;}
93// G4double GetCosthAtEndOfLastAdjointTrack(){return last_cos_th;}
94// G4String GetFwdParticleNameAtEndOfLastAdjointTrack(){return last_fwd_part_name;}
95// G4int GetFwdParticlePDGEncodingAtEndOfLastAdjointTrack(){return last_fwd_part_PDGEncoding;}
96// G4int GetFwdParticleIndexAtEndOfLastAdjointTrack().
97//
98// In orther to have a code working for both forward and adjoint simulation mode, the extra code needed in user actions for the adjoint
99// simulation mode can be seperated to the code needed only for the normal forward simulation by using the following method
100//
101// G4bool GetAdjointSimMode() that return true if an adjoint simulation is running and false if not!
102//
103// Example of modification in the analysis part of the code:
104// -------------------------------------------------------------
105// Let say that in the forward simulation a G4 application computes the energy deposited in a volume.
106// The user wants to normalise its results for an external isotropic source of e- with differential spectrum given by f(E).
107// A possible modification of the code where the deposited energy Edep during an event is registered would be the following
108//
109// G4AdjointSimManager* theAdjSimManager = G4AdjointSimManager::GetInstance();
110// if (theAdjSimManager->GetAdjointSimMode()) {
111// //code of the user that should be consider only for forwrad simulation
112// G4double normalised_edep = 0.;
113// if (theAdjSimManager->GetFwdParticleNameAtEndOfLastAdjointTrack() == "e-"){
114// G4double ekin_prim = theAdjSimManager->GetEkinAtEndOfLastAdjointTrack();
115// G4double weight_prim = theAdjSimManager->GetWeightAtEndOfLastAdjointTrack();
116// normalised_edep = weight_prim*f(ekin_prim);
117// }
118// //then follow the code where normalised_edep is printed, or registered or whatever ....
119// }
120//
121// else { //code of the user that should be consider only for forward simulation
122// }
123// Note that in this example a normalisation to only primary e- with only one spectrum f(E) is considered. The example code could be easily
124// adapted for a normalisatin to several spectra and several type of primary particles in the same simulation.
125//
126
127#ifndef G4AdjointSimManager_h
128#define G4AdjointSimManager_h 1
129#include "globals.hh"
130#include "G4ThreeVector.hh"
131#include <vector>
132
133
139class G4UserRunAction;
140class G4AdjointRunAction;
143class G4AdjointEventAction;
148
150{
151 public:
152
154
155 public: //publich methods
156
157 void RunAdjointSimulation(G4int nb_evt);
158
159 inline G4int GetNbEvtOfLastRun(){return nb_evt_of_last_run;}
160
161 void SetAdjointTrackingMode(G4bool aBool);
162 inline G4bool GetAdjointTrackingMode(){return adjoint_tracking_mode;} //true if an adjoint track is being processed
163 inline G4bool GetAdjointSimMode(){return adjoint_sim_mode;} //true if an adjoint simulation is running
164
168
169 inline G4int GetIDOfLastAdjParticleReachingExtSource(){return ID_of_last_particle_that_reach_the_ext_source;};
171 inline G4ThreeVector GetDirectionAtEndOfLastAdjointTrack(){ return last_direction;}
172 inline G4double GetEkinAtEndOfLastAdjointTrack(){ return last_ekin;}
173 inline G4double GetEkinNucAtEndOfLastAdjointTrack(){ return last_ekin_nuc;}
174 inline G4double GetWeightAtEndOfLastAdjointTrack(){return last_weight;}
175 inline G4double GetCosthAtEndOfLastAdjointTrack(){return last_cos_th;}
176 inline const G4String& GetFwdParticleNameAtEndOfLastAdjointTrack(){return last_fwd_part_name;}
177 inline G4int GetFwdParticlePDGEncodingAtEndOfLastAdjointTrack(){return last_fwd_part_PDGEncoding;}
178 inline G4int GetFwdParticleIndexAtEndOfLastAdjointTrack(){return last_fwd_part_index;}
179
180 std::vector<G4ParticleDefinition*> GetListOfPrimaryFwdParticles();
181
185 void SetExtSourceEmax(G4double Emax);
186
187 //Definition of adjoint source
188 //----------------------------
189
195 inline G4double GetAdjointSourceArea(){return area_of_the_adjoint_source;}
196 void ConsiderParticleAsPrimary(const G4String& particle_name);
197 void NeglectParticleAsPrimary(const G4String& particle_name);
200
201 inline void SetNormalisationMode(G4int n){normalisation_mode=n;};
202 G4int GetNormalisationMode(){return normalisation_mode;};
204
205 //Definition of user actions for the adjoint tracking phase
206 //----------------------------
211 void SetAdjointRunAction(G4UserRunAction* anAction);
212
213 //Set methods for user run actions
214 //--------------------------------
215 inline void UseUserStackingActionInFwdTrackingPhase(G4bool aBool){use_user_StackingAction=aBool;}
216
217 //Convergence test
218 //-----------------------
219 /*
220 void RegisterSignalForConvergenceTest(G4double aSignal);
221 void DefineExponentialPrimarySpectrumForConvergenceTest(G4ParticleDefinition* aPartDef, G4double E0);
222 void DefinePowerLawPrimarySpectrumForConvergenceTest(G4ParticleDefinition* aPartDef, G4double alpha);
223
224 */
225
226 private:
227
228 static G4AdjointSimManager* instance;
229
230 private: // methods
231
232 void SetRestOfAdjointActions();
233 void SetAdjointPrimaryRunAndStackingActions();
234 void ResetRestOfUserActions();
235 void ResetUserPrimaryRunAndStackingActions();
236 void DefineUserActions();
237
238 private: //constructor and destructor
239
242
243 private ://attributes
244
245 //Messenger
246 //----------
247 G4AdjointSimMessenger* theMessenger;
248
249 //user defined actions for the normal fwd simulation. Taken from the G4RunManager
250 //-------------------------------------------------
251 bool user_action_already_defined;
252 G4UserRunAction* fUserRunAction;
253 G4UserEventAction* fUserEventAction;
254 G4VUserPrimaryGeneratorAction* fUserPrimaryGeneratorAction;
255 G4UserTrackingAction* fUserTrackingAction;
256 G4UserSteppingAction* fUserSteppingAction;
257 G4UserStackingAction* fUserStackingAction;
258 bool use_user_StackingAction; //only for fwd part of the adjoint simulation
259
260 //action for adjoint simulation
261 //-----------------------------
262 G4UserRunAction* theAdjointRunAction;
263 G4UserEventAction* theAdjointEventAction;
264 G4AdjointPrimaryGeneratorAction* theAdjointPrimaryGeneratorAction;
265 G4UserTrackingAction* theAdjointTrackingAction;
266 G4AdjointSteppingAction* theAdjointSteppingAction;
267 G4AdjointStackingAction* theAdjointStackingAction;
268
269 //adjoint mode
270 //-------------
271 G4bool adjoint_tracking_mode;
272 G4bool adjoint_sim_mode;
273
274 //adjoint particle information on the external surface
275 //-----------------------------
276 G4ThreeVector last_pos;
277 G4ThreeVector last_direction;
278 G4double last_ekin,last_ekin_nuc; //last_ekin_nuc=last_ekin/nuc, nuc is 1 if not a nucleus
279 G4double last_cos_th;
280 G4String last_fwd_part_name;
281 G4int last_fwd_part_PDGEncoding;
282 G4int last_fwd_part_index;
283 G4double last_weight;
284 G4int ID_of_last_particle_that_reach_the_ext_source;
285
286 G4int nb_evt_of_last_run;
287 G4int normalisation_mode;
288
289 //Adjoint source
290 //--------------
291 G4double area_of_the_adjoint_source;
292 G4double nb_nuc;
293 G4double theAdjointPrimaryWeight;
294
295 //Weight Analysis
296 //----------
297 G4PhysicsLogVector* electron_last_weight_vector;
298 G4PhysicsLogVector* proton_last_weight_vector;
299 G4PhysicsLogVector* gamma_last_weight_vector;
300
301 G4bool welcome_message;
302
303/* For the future
304 //Convergence test
305 //----------------
306
307 G4double normalised_signal;
308 G4double error_signal;
309 G4bool convergence_test_is_used;
310 G4bool power_law_spectrum_for_convergence_test; // true PowerLaw, ;
311 G4ParticleDefinition* the_par_def_for_convergence_test;
312*/
313
314};
315
316#endif
317
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
void SetAdjointStackingAction(G4UserStackingAction *anAction)
G4bool DefineAdjointSourceOnTheExtSurfaceOfAVolume(const G4String &volume_name)
G4int GetFwdParticlePDGEncodingAtEndOfLastAdjointTrack()
const G4String & GetPrimaryIonName()
G4bool DefineExtSourceOnTheExtSurfaceOfAVolume(const G4String &volume_name)
G4ThreeVector GetPositionAtEndOfLastAdjointTrack()
G4bool GetDidAdjParticleReachTheExtSource()
void RunAdjointSimulation(G4int nb_evt)
G4double GetEkinNucAtEndOfLastAdjointTrack()
const G4String & GetFwdParticleNameAtEndOfLastAdjointTrack()
G4bool DefineSphericalExtSourceWithCentreAtTheCentreOfAVolume(G4double radius, const G4String &volume_name)
void SetAdjointTrackingMode(G4bool aBool)
std::vector< G4ParticleDefinition * > GetListOfPrimaryFwdParticles()
G4int GetIDOfLastAdjParticleReachingExtSource()
void ConsiderParticleAsPrimary(const G4String &particle_name)
void SetAdjointRunAction(G4UserRunAction *anAction)
void SetExtSourceEmax(G4double Emax)
void SetAdjointSourceEmax(G4double Emax)
void RegisterAdjointPrimaryWeight(G4double aWeight)
void SetAdjointSourceEmin(G4double Emin)
void SetAdjointEventAction(G4UserEventAction *anAction)
void UseUserStackingActionInFwdTrackingPhase(G4bool aBool)
void NeglectParticleAsPrimary(const G4String &particle_name)
G4bool DefineSphericalAdjointSourceWithCentreAtTheCentreOfAVolume(G4double radius, const G4String &volume_name)
G4int GetFwdParticleIndexAtEndOfLastAdjointTrack()
static G4AdjointSimManager * GetInstance()
G4double GetWeightAtEndOfLastAdjointTrack()
G4ThreeVector GetDirectionAtEndOfLastAdjointTrack()
G4double GetCosthAtEndOfLastAdjointTrack()
void SetAdjointSteppingAction(G4UserSteppingAction *anAction)
void SetNormalisationMode(G4int n)
void SetAdjointTrackingAction(G4UserTrackingAction *anAction)
G4bool DefineSphericalExtSource(G4double radius, G4ThreeVector pos)
G4bool DefineSphericalAdjointSource(G4double radius, G4ThreeVector pos)
void SetPrimaryIon(G4ParticleDefinition *adjointIon, G4ParticleDefinition *fwdIon)
G4double GetEkinAtEndOfLastAdjointTrack()