Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ProtonEvaporationProbability.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// J.M. Quesada (August2008). Based on:
29//
30// Hadronic Process: Nuclear De-excitations
31// by V. Lara (Oct 1998)
32//
33// Modified:
34// 03-09-2008 J.M. Quesada for external choice of inverse cross section option
35// 17-11-2010 V.Ivanchenko integer Z and A
36
39#include "G4SystemOfUnits.hh"
40
42 G4EvaporationProbability(1,1,2,&theCoulombBarrier) // A,Z,Gamma,&theCoulombBarrier
43{
44 ResidualA = ResidualZ = theA = theZ = FragmentA = 0;
45 ResidualAthrd = FragmentAthrd = U = 0.0;
46}
47
49{}
50
51G4double G4ProtonEvaporationProbability::CalcAlphaParam(const G4Fragment & fragment)
52 { return 1.0 + CCoeficient(fragment.GetZ_asInt()-GetZ());}
53
54G4double G4ProtonEvaporationProbability::CalcBetaParam(const G4Fragment & )
55 { return 0.0; }
56
57G4double G4ProtonEvaporationProbability::CCoeficient(G4int aZ)
58{
59 // Data comes from
60 // Dostrovsky, Fraenkel and Friedlander
61 // Physical Review, vol 116, num. 3 1959
62 //
63 // const G4int size = 5;
64 // G4double Zlist[5] = { 10.0, 20.0, 30.0, 50.0, 70.0};
65 // G4double Cp[5] = { 0.50, 0.28, 0.20, 0.15, 0.10};
66 G4double C = 0.0;
67
68 if (aZ >= 70) {
69 C = 0.10;
70 } else {
71 C = ((((0.15417e-06*aZ) - 0.29875e-04)*aZ + 0.21071e-02)*aZ - 0.66612e-01)*aZ + 0.98375;
72 }
73
74 return C;
75
76}
77
78///////////////////////////////////////////////////////////////////////////////////
79//J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections for protons
80//OPT=0 Dostrovski's parameterization
81//OPT=1 Chatterjee's parameterization
82//OPT=2,4 Wellisch's parameterization
83//OPT=3 Kalbach's parameterization
84//
86G4ProtonEvaporationProbability::CrossSection(const G4Fragment & fragment, G4double K)
87{
88 // G4cout<<" In G4ProtonEVaporationProbability OPTxs="<<OPTxs<<G4endl;
89 // G4cout<<" In G4ProtonEVaporationProbability useSICB="<<useSICB<<G4endl;
90
91 theA=GetA();
92 theZ=GetZ();
93 ResidualA=fragment.GetA_asInt()-theA;
94 ResidualZ=fragment.GetZ_asInt()-theZ;
95
96 ResidualAthrd=fG4pow->Z13(ResidualA);
97 FragmentA=fragment.GetA_asInt();
98 FragmentAthrd=fG4pow->Z13(FragmentA);
99
100 U=fragment.GetExcitationEnergy();
101
102 if (OPTxs==0) {std::ostringstream errOs;
103 errOs << "We should'n be here (OPT =0) at evaporation cross section calculation (protons)!!" <<G4endl;
104 throw G4HadronicException(__FILE__, __LINE__, errOs.str());
105 return 0.;}
106 else if( OPTxs==1 ) return GetOpt1( K);
107 else if( OPTxs==2 ||OPTxs==4) return GetOpt2( K);
108 else if (OPTxs==3 ) return GetOpt3( K);
109 else{
110 std::ostringstream errOs;
111 errOs << "BAD PROTON CROSS SECTION OPTION AT EVAPORATION!!" <<G4endl;
112 throw G4HadronicException(__FILE__, __LINE__, errOs.str());
113 return 0.;
114 }
115}
116
117//********************* OPT=1 : Chatterjee's cross section *********************
118//(fitting to cross section from Bechetti & Greenles OM potential)
119
120G4double G4ProtonEvaporationProbability::GetOpt1(G4double K)
121{
122 G4double Kc=K;
123
124 // JMQ xsec is set constat above limit of validity
125 if (K > 50*MeV) { Kc = 50*MeV; }
126
127 G4double landa, landa0, landa1, mu, mum0, mu1,nu, nu0, nu1, nu2,xs;
128 G4double p, p0, p1, p2,Ec,delta,q,r,ji;
129
130 p0 = 15.72;
131 p1 = 9.65;
132 p2 = -449.0;
133 landa0 = 0.00437;
134 landa1 = -16.58;
135 mum0 = 244.7;
136 mu1 = 0.503;
137 nu0 = 273.1;
138 nu1 = -182.4;
139 nu2 = -1.872;
140 delta=0.;
141
142 Ec = 1.44*theZ*ResidualZ/(1.5*ResidualAthrd+delta);
143 p = p0 + p1/Ec + p2/(Ec*Ec);
144 landa = landa0*ResidualA + landa1;
145
146 G4double resmu1 = fG4pow->powZ(ResidualA,mu1);
147 mu = mum0*resmu1;
148 nu = resmu1*(nu0 + nu1*Ec + nu2*(Ec*Ec));
149 q = landa - nu/(Ec*Ec) - 2*p*Ec;
150 r = mu + 2*nu/Ec + p*(Ec*Ec);
151
152 ji=std::max(Kc,Ec);
153 if(Kc < Ec) { xs = p*Kc*Kc + q*Kc + r;}
154 else {xs = p*(Kc - ji)*(Kc - ji) + landa*Kc + mu + nu*(2 - Kc/ji)/ji ;}
155 if (xs <0.0) {xs=0.0;}
156
157 return xs;
158}
159
160//************* OPT=2 : Welisch's proton reaction cross section ***************
161
162G4double G4ProtonEvaporationProbability::GetOpt2(G4double K)
163{
164
165 G4double eekin,ekin,ff1,ff2,ff3,r0,fac,fac1,fac2,b0,xine_th(0);
166
167 // This is redundant when the Coulomb barrier is overimposed to all
168 // cross sections
169 // It should be kept when Coulomb barrier only imposed at OPTxs=2
170
171 if(!useSICB && K<=theCoulombBarrier.GetCoulombBarrier(ResidualA,ResidualZ,U))
172 { return 0.0; }
173
174 eekin=K;
175 G4int rnneu=ResidualA-ResidualZ;
176 ekin=eekin/1000;
177 r0=1.36*1.e-15;
178 fac=pi*r0*r0;
179 b0=2.247-0.915*(1.-1./ResidualAthrd);
180 fac1=b0*(1.-1./ResidualAthrd);
181 fac2=1.;
182 if(rnneu > 1.5) { fac2 = fG4pow->logZ(rnneu); }
183 xine_th= 1.e+31*fac*fac2*(1.+ResidualAthrd-fac1);
184 xine_th=(1.-0.15*std::exp(-ekin))*xine_th/(1.00-0.0007*ResidualA);
185 ff1=0.70-0.0020*ResidualA;
186 ff2=1.00+1/G4double(ResidualA);
187 ff3=0.8+18/G4double(ResidualA)-0.002*ResidualA;
188 fac=1.-(1./(1.+std::exp(-8.*ff1*(std::log10(ekin)+1.37*ff2))));
189 xine_th=xine_th*(1.+ff3*fac);
190 ff1=1.-1/G4double(ResidualA)-0.001*ResidualA;
191 ff2=1.17-2.7/G4double(ResidualA)-0.0014*ResidualA;
192 fac=-8.*ff1*(std::log10(ekin)+2.0*ff2);
193 fac=1./(1.+std::exp(fac));
194 xine_th=xine_th*fac;
195 if (xine_th < 0.0){
196 std::ostringstream errOs;
197 G4cout<<"WARNING: negative Wellisch cross section "<<G4endl;
198 errOs << "RESIDUAL: A=" << ResidualA << " Z=" << ResidualZ <<G4endl;
199 errOs <<" xsec("<<ekin<<" MeV) ="<<xine_th <<G4endl;
200 throw G4HadronicException(__FILE__, __LINE__, errOs.str());
201 }
202 return xine_th;
203}
204
205// *********** OPT=3 : Kalbach's cross sections (from PRECO code)*************
206G4double G4ProtonEvaporationProbability::GetOpt3(const G4double K)
207{
208 // ** p from becchetti and greenlees (but modified with sub-barrier
209 // ** correction function and xp2 changed from -449)
210
211 G4double landa, landa0, landa1, mu, mum0, mu1,nu, nu0, nu1, nu2;
212 G4double p, p0, p1, p2;
213 p0 = 15.72;
214 p1 = 9.65;
215 p2 = -300.;
216 landa0 = 0.00437;
217 landa1 = -16.58;
218 mum0 = 244.7;
219 mu1 = 0.503;
220 nu0 = 273.1;
221 nu1 = -182.4;
222 nu2 = -1.872;
223
224 // parameters for proton cross section refinement
225 /*
226 G4double afit,bfit,a2,b2;
227 afit=-0.0785656;
228 bfit=5.10789;
229 a2= -0.00089076;
230 b2= 0.0231597;
231 */
232 G4double ec,ecsq,xnulam,etest(0.),ra(0.),a,w,c,signor(1.),signor2,sig;
233 G4double b,ecut,cut,ecut2,geom,elab;
234
235 G4double flow = 1.e-18;
236 G4double spill= 1.e+18;
237
238 if (ResidualA <= 60) { signor = 0.92; }
239 else if (ResidualA < 100) { signor = 0.8 + ResidualA*0.002; }
240
241 ec = 1.44 * theZ * ResidualZ / (1.5*ResidualAthrd+ra);
242 ecsq = ec * ec;
243 p = p0 + p1/ec + p2/ecsq;
244 landa = landa0*ResidualA + landa1;
245 a = fG4pow->powZ(ResidualA,mu1);
246 mu = mum0 * a;
247 nu = a* (nu0+nu1*ec+nu2*ecsq);
248
249 c =std::min(3.15,ec*0.5);
250 w = 0.7 * c / 3.15;
251
252 xnulam = nu / landa;
253 if (xnulam > spill) { xnulam=0.; }
254 if (xnulam >= flow) { etest =std::sqrt(xnulam) + 7.; }
255
256 a = -2.*p*ec + landa - nu/ecsq;
257 b = p*ecsq + mu + 2.*nu/ec;
258 ecut = 0.;
259 cut = a*a - 4.*p*b;
260 if (cut > 0.) { ecut = std::sqrt(cut); }
261 ecut = (ecut-a) / (p+p);
262 ecut2 = ecut;
263 //JMQ 290310 for avoiding unphysical increase below minimum (at ecut)
264 // ecut<0 means that there is no cut with energy axis, i.e. xs is set
265 // to 0 bellow minimum
266 // if (cut < 0.) ecut2 = ecut - 2.;
267 if (cut < 0.) { ecut2 = ecut; }
268 elab = K * FragmentA /G4double(ResidualA);
269 sig = 0.;
270 if (elab <= ec) { //start for E<Ec
271 if (elab > ecut2) { sig = (p*elab*elab+a*elab+b) * signor; }
272
273 signor2 = (ec-elab-c) / w;
274 signor2 = 1. + std::exp(signor2);
275 sig = sig / signor2;
276 } //end for E<=Ec
277 else{ //start for E>Ec
278 sig = (landa*elab+mu+nu/elab) * signor;
279 geom = 0.;
280
281 if (xnulam < flow || elab < etest)
282 {
283 if (sig <0.0) {sig=0.0;}
284 return sig;
285 }
286 geom = std::sqrt(theA*K);
287 geom = 1.23*ResidualAthrd + ra + 4.573/geom;
288 geom = 31.416 * geom * geom;
289 sig = std::max(geom,sig);
290
291 } //end for E>Ec
292 return sig;
293}
294
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
G4double GetCoulombBarrier(G4int ARes, G4int ZRes, G4double U) const
G4double GetExcitationEnergy() const
Definition: G4Fragment.hh:235
G4int GetZ_asInt() const
Definition: G4Fragment.hh:223
G4int GetA_asInt() const
Definition: G4Fragment.hh:218
G4double Z13(G4int Z)
Definition: G4Pow.hh:110
G4double powZ(G4int Z, G4double y)
Definition: G4Pow.hh:180
G4double logZ(G4int Z)
Definition: G4Pow.hh:146
const G4double pi