Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4VCrossSectionHandler.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// Author: Maria Grazia Pia ([email protected])
30//
31// History:
32// -----------
33// 1 Aug 2001 MGP Created
34// 09 Oct 2001 VI Add FindValue with 3 parameters
35// + NumberOfComponents
36// 19 Jul 2002 VI Create composite data set for material
37// 21 Jan 2003 VI Cut per region
38//
39// 15 Jul 2009 Nicolas A. Karakatsanis
40//
41// - LoadNonLogData method was created to load only the non-logarithmic data from G4EMLOW
42// dataset. It is essentially performing the data loading operations as in the past.
43//
44// - LoadData method was revised in order to calculate the logarithmic values of the data
45// It retrieves the data values from the G4EMLOW data files but, then, calculates the
46// respective log values and loads them to seperate data structures.
47// The EM data sets, initialized this way, contain both non-log and log values.
48// These initialized data sets can enhance the computing performance of data interpolation
49// operations
50//
51// - BuildMeanFreePathForMaterials method was also revised in order to calculate the
52// logarithmic values of the loaded data.
53// It generates the data values and, then, calculates the respective log values which
54// later load to seperate data structures.
55// The EM data sets, initialized this way, contain both non-log and log values.
56// These initialized data sets can enhance the computing performance of data interpolation
57// operations
58//
59// - LoadShellData method was revised in order to eliminate the presence of a potential
60// memory leak originally identified by Riccardo Capra.
61// Riccardo Capra Original Comment
62// Riccardo Capra <[email protected]>: PLEASE CHECK THE FOLLOWING PIECE OF CODE
63// "energies" AND "data" G4DataVector ARE ALLOCATED, FILLED IN AND NEVER USED OR
64// DELETED. WHATSMORE LOADING FILE OPERATIONS WERE DONE BY G4ShellEMDataSet
65// EVEN BEFORE THE CHANGES I DID ON THIS FILE. SO THE FOLLOWING CODE IN MY
66// OPINION SHOULD BE USELESS AND SHOULD PRODUCE A MEMORY LEAK.
67//
68//
69// -------------------------------------------------------------------
70
74#include "G4VEMDataSet.hh"
75#include "G4EMDataSet.hh"
77#include "G4ShellEMDataSet.hh"
79#include "G4Material.hh"
80#include "G4Element.hh"
81#include "Randomize.hh"
82#include <map>
83#include <vector>
84#include <fstream>
85#include <sstream>
86
87
89{
90 crossSections = 0;
91 interpolation = 0;
92 Initialise();
94}
95
96
98 G4double minE,
99 G4double maxE,
100 G4int bins,
101 G4double unitE,
102 G4double unitData,
103 G4int minZ,
104 G4int maxZ)
105 : interpolation(algorithm), eMin(minE), eMax(maxE), nBins(bins),
106 unit1(unitE), unit2(unitData), zMin(minZ), zMax(maxZ)
107{
108 crossSections = 0;
110}
111
113{
114 delete interpolation;
115 interpolation = 0;
116 std::map<G4int,G4VEMDataSet*,std::less<G4int> >::iterator pos;
117
118 for (pos = dataMap.begin(); pos != dataMap.end(); ++pos)
119 {
120 // The following is a workaround for STL ObjectSpace implementation,
121 // which does not support the standard and does not accept
122 // the syntax pos->second
123 // G4VEMDataSet* dataSet = pos->second;
124 G4VEMDataSet* dataSet = (*pos).second;
125 delete dataSet;
126 }
127
128 if (crossSections != 0)
129 {
130 size_t n = crossSections->size();
131 for (size_t i=0; i<n; i++)
132 {
133 delete (*crossSections)[i];
134 }
135 delete crossSections;
136 crossSections = 0;
137 }
138}
139
141 G4double minE, G4double maxE,
142 G4int numberOfBins,
143 G4double unitE, G4double unitData,
144 G4int minZ, G4int maxZ)
145{
146 if (algorithm != 0)
147 {
148 delete interpolation;
149 interpolation = algorithm;
150 }
151 else
152 {
153 delete interpolation;
154 interpolation = CreateInterpolation();
155 }
156
157 eMin = minE;
158 eMax = maxE;
159 nBins = numberOfBins;
160 unit1 = unitE;
161 unit2 = unitData;
162 zMin = minZ;
163 zMax = maxZ;
164}
165
167{
168 std::map<G4int,G4VEMDataSet*,std::less<G4int> >::const_iterator pos;
169
170 for (pos = dataMap.begin(); pos != dataMap.end(); pos++)
171 {
172 // The following is a workaround for STL ObjectSpace implementation,
173 // which does not support the standard and does not accept
174 // the syntax pos->first or pos->second
175 // G4int z = pos->first;
176 // G4VEMDataSet* dataSet = pos->second;
177 G4int z = (*pos).first;
178 G4VEMDataSet* dataSet = (*pos).second;
179 G4cout << "---- Data set for Z = "
180 << z
181 << G4endl;
182 dataSet->PrintData();
183 G4cout << "--------------------------------------------------" << G4endl;
184 }
185}
186
188{
189 size_t nZ = activeZ.size();
190 for (size_t i=0; i<nZ; i++)
191 {
192 G4int Z = (G4int) activeZ[i];
193
194 // Build the complete string identifying the file with the data set
195
196 char* path = getenv("G4LEDATA");
197 if (!path)
198 {
199 G4Exception("G4VCrossSectionHandler::LoadData",
200 "em0006",FatalException,"G4LEDATA environment variable not set");
201 return;
202 }
203
204 std::ostringstream ost;
205 ost << path << '/' << fileName << Z << ".dat";
206 std::ifstream file(ost.str().c_str());
207 std::filebuf* lsdp = file.rdbuf();
208
209 if (! (lsdp->is_open()) )
210 {
211 G4String excep = "data file: " + ost.str() + " not found";
212 G4Exception("G4VCrossSectionHandler::LoadData",
213 "em0003",FatalException,excep);
214 }
215 G4double a = 0;
216 G4int k = 0;
217 G4int nColumns = 2;
218
219 G4DataVector* orig_reg_energies = new G4DataVector;
220 G4DataVector* orig_reg_data = new G4DataVector;
221 G4DataVector* log_reg_energies = new G4DataVector;
222 G4DataVector* log_reg_data = new G4DataVector;
223
224 do
225 {
226 file >> a;
227
228 if (a==0.) a=1e-300;
229
230 // The file is organized into four columns:
231 // 1st column contains the values of energy
232 // 2nd column contains the corresponding data value
233 // The file terminates with the pattern: -1 -1
234 // -2 -2
235 //
236 if (a != -1 && a != -2)
237 {
238 if (k%nColumns == 0)
239 {
240 orig_reg_energies->push_back(a*unit1);
241 log_reg_energies->push_back(std::log10(a)+std::log10(unit1));
242 }
243 else if (k%nColumns == 1)
244 {
245 orig_reg_data->push_back(a*unit2);
246 log_reg_data->push_back(std::log10(a)+std::log10(unit2));
247 }
248 k++;
249 }
250 }
251 while (a != -2); // End of File
252
253 file.close();
254 G4VDataSetAlgorithm* algo = interpolation->Clone();
255
256 G4VEMDataSet* dataSet = new G4EMDataSet(Z,orig_reg_energies,orig_reg_data,log_reg_energies,log_reg_data,algo);
257
258 dataMap[Z] = dataSet;
259
260 }
261}
262
263
265{
266 size_t nZ = activeZ.size();
267 for (size_t i=0; i<nZ; i++)
268 {
269 G4int Z = (G4int) activeZ[i];
270
271 // Build the complete string identifying the file with the data set
272
273 char* path = getenv("G4LEDATA");
274 if (!path)
275 {
276 G4Exception("G4VCrossSectionHandler::LoadNonLogData",
277 "em0006",FatalException,"G4LEDATA environment variable not set");
278 return;
279 }
280
281 std::ostringstream ost;
282 ost << path << '/' << fileName << Z << ".dat";
283 std::ifstream file(ost.str().c_str());
284 std::filebuf* lsdp = file.rdbuf();
285
286 if (! (lsdp->is_open()) )
287 {
288 G4String excep = "data file: " + ost.str() + " not found";
289 G4Exception("G4VCrossSectionHandler::LoadNonLogData",
290 "em0003",FatalException,excep);
291 }
292 G4double a = 0;
293 G4int k = 0;
294 G4int nColumns = 2;
295
296 G4DataVector* orig_reg_energies = new G4DataVector;
297 G4DataVector* orig_reg_data = new G4DataVector;
298
299 do
300 {
301 file >> a;
302
303 // The file is organized into four columns:
304 // 1st column contains the values of energy
305 // 2nd column contains the corresponding data value
306 // The file terminates with the pattern: -1 -1
307 // -2 -2
308 //
309 if (a != -1 && a != -2)
310 {
311 if (k%nColumns == 0)
312 {
313 orig_reg_energies->push_back(a*unit1);
314 }
315 else if (k%nColumns == 1)
316 {
317 orig_reg_data->push_back(a*unit2);
318 }
319 k++;
320 }
321 }
322 while (a != -2); // End of File
323
324 file.close();
325 G4VDataSetAlgorithm* algo = interpolation->Clone();
326
327 G4VEMDataSet* dataSet = new G4EMDataSet(Z,orig_reg_energies,orig_reg_data,algo);
328
329 dataMap[Z] = dataSet;
330
331 }
332}
333
335{
336 size_t nZ = activeZ.size();
337 for (size_t i=0; i<nZ; i++)
338 {
339 G4int Z = (G4int) activeZ[i];
340
341 G4VDataSetAlgorithm* algo = interpolation->Clone();
342 G4VEMDataSet* dataSet = new G4ShellEMDataSet(Z, algo);
343
344 dataSet->LoadData(fileName);
345
346 dataMap[Z] = dataSet;
347 }
348}
349
350
351
352
354{
355 // Reset the map of data sets: remove the data sets from the map
356 std::map<G4int,G4VEMDataSet*,std::less<G4int> >::iterator pos;
357
358 if(! dataMap.empty())
359 {
360 for (pos = dataMap.begin(); pos != dataMap.end(); ++pos)
361 {
362 // The following is a workaround for STL ObjectSpace implementation,
363 // which does not support the standard and does not accept
364 // the syntax pos->first or pos->second
365 // G4VEMDataSet* dataSet = pos->second;
366 G4VEMDataSet* dataSet = (*pos).second;
367 delete dataSet;
368 dataSet = 0;
369 G4int i = (*pos).first;
370 dataMap[i] = 0;
371 }
372 dataMap.clear();
373 }
374
375 activeZ.clear();
377}
378
380{
381 G4double value = 0.;
382
383 std::map<G4int,G4VEMDataSet*,std::less<G4int> >::const_iterator pos;
384 pos = dataMap.find(Z);
385 if (pos!= dataMap.end())
386 {
387 // The following is a workaround for STL ObjectSpace implementation,
388 // which does not support the standard and does not accept
389 // the syntax pos->first or pos->second
390 // G4VEMDataSet* dataSet = pos->second;
391 G4VEMDataSet* dataSet = (*pos).second;
392 value = dataSet->FindValue(energy);
393 }
394 else
395 {
396 G4cout << "WARNING: G4VCrossSectionHandler::FindValue did not find Z = "
397 << Z << G4endl;
398 }
399 return value;
400}
401
403 G4int shellIndex) const
404{
405 G4double value = 0.;
406
407 std::map<G4int,G4VEMDataSet*,std::less<G4int> >::const_iterator pos;
408 pos = dataMap.find(Z);
409 if (pos!= dataMap.end())
410 {
411 // The following is a workaround for STL ObjectSpace implementation,
412 // which does not support the standard and does not accept
413 // the syntax pos->first or pos->second
414 // G4VEMDataSet* dataSet = pos->second;
415 G4VEMDataSet* dataSet = (*pos).second;
416 if (shellIndex >= 0)
417 {
418 G4int nComponents = dataSet->NumberOfComponents();
419 if(shellIndex < nComponents)
420 // - MGP - Why doesn't it use G4VEMDataSet::FindValue directly?
421 value = dataSet->GetComponent(shellIndex)->FindValue(energy);
422 else
423 {
424 G4cout << "WARNING: G4VCrossSectionHandler::FindValue did not find"
425 << " shellIndex= " << shellIndex
426 << " for Z= "
427 << Z << G4endl;
428 }
429 } else {
430 value = dataSet->FindValue(energy);
431 }
432 }
433 else
434 {
435 G4cout << "WARNING: G4VCrossSectionHandler::FindValue did not find Z = "
436 << Z << G4endl;
437 }
438 return value;
439}
440
441
443 G4double energy) const
444{
445 G4double value = 0.;
446
447 const G4ElementVector* elementVector = material->GetElementVector();
448 const G4double* nAtomsPerVolume = material->GetVecNbOfAtomsPerVolume();
449 G4int nElements = material->GetNumberOfElements();
450
451 for (G4int i=0 ; i<nElements ; i++)
452 {
453 G4int Z = (G4int) (*elementVector)[i]->GetZ();
454 G4double elementValue = FindValue(Z,energy);
455 G4double nAtomsVol = nAtomsPerVolume[i];
456 value += nAtomsVol * elementValue;
457 }
458
459 return value;
460}
461
462
464{
465 // Builds a CompositeDataSet containing the mean free path for each material
466 // in the material table
467
468 G4DataVector energyVector;
469 G4double dBin = std::log10(eMax/eMin) / nBins;
470
471 for (G4int i=0; i<nBins+1; i++)
472 {
473 energyVector.push_back(std::pow(10., std::log10(eMin)+i*dBin));
474 }
475
476 // Factory method to build cross sections in derived classes,
477 // related to the type of physics process
478
479 if (crossSections != 0)
480 { // Reset the list of cross sections
481 std::vector<G4VEMDataSet*>::iterator mat;
482 if (! crossSections->empty())
483 {
484 for (mat = crossSections->begin(); mat!= crossSections->end(); ++mat)
485 {
486 G4VEMDataSet* set = *mat;
487 delete set;
488 set = 0;
489 }
490 crossSections->clear();
491 delete crossSections;
492 crossSections = 0;
493 }
494 }
495
496 crossSections = BuildCrossSectionsForMaterials(energyVector,energyCuts);
497
498 if (crossSections == 0)
499 {
500 G4Exception("G4VCrossSectionHandler::BuildMeanFreePathForMaterials",
501 "em1010",FatalException,"crossSections = 0");
502 return 0;
503 }
504
506 G4VEMDataSet* materialSet = new G4CompositeEMDataSet(algo);
507 //G4cout << "G4VCrossSectionHandler new dataset " << materialSet << G4endl;
508
509 G4DataVector* energies;
510 G4DataVector* data;
511 G4DataVector* log_energies;
512 G4DataVector* log_data;
513
514
515 const G4ProductionCutsTable* theCoupleTable=
517 size_t numOfCouples = theCoupleTable->GetTableSize();
518
519
520 for (size_t mLocal=0; mLocal<numOfCouples; mLocal++)
521 {
522 energies = new G4DataVector;
523 data = new G4DataVector;
524 log_energies = new G4DataVector;
525 log_data = new G4DataVector;
526 for (G4int bin=0; bin<nBins; bin++)
527 {
528 G4double energy = energyVector[bin];
529 energies->push_back(energy);
530 log_energies->push_back(std::log10(energy));
531 G4VEMDataSet* matCrossSet = (*crossSections)[mLocal];
532 G4double materialCrossSection = 0.0;
533 G4int nElm = matCrossSet->NumberOfComponents();
534 for(G4int j=0; j<nElm; j++) {
535 materialCrossSection += matCrossSet->GetComponent(j)->FindValue(energy);
536 }
537
538 if (materialCrossSection > 0.)
539 {
540 data->push_back(1./materialCrossSection);
541 log_data->push_back(std::log10(1./materialCrossSection));
542 }
543 else
544 {
545 data->push_back(DBL_MAX);
546 log_data->push_back(std::log10(DBL_MAX));
547 }
548 }
550
551 //G4VEMDataSet* dataSet = new G4EMDataSet(m,energies,data,algo,1.,1.);
552
553 G4VEMDataSet* dataSet = new G4EMDataSet(mLocal,energies,data,log_energies,log_data,algoLocal,1.,1.);
554
555 materialSet->AddComponent(dataSet);
556 }
557
558 return materialSet;
559}
560
561
563 G4double e) const
564{
565 // Select randomly an element within the material, according to the weight
566 // determined by the cross sections in the data set
567
568 const G4Material* material = couple->GetMaterial();
569 G4int nElements = material->GetNumberOfElements();
570
571 // Special case: the material consists of one element
572 if (nElements == 1)
573 {
574 G4int Z = (G4int) material->GetZ();
575 return Z;
576 }
577
578 // Composite material
579
580 const G4ElementVector* elementVector = material->GetElementVector();
581 size_t materialIndex = couple->GetIndex();
582
583 G4VEMDataSet* materialSet = (*crossSections)[materialIndex];
584 G4double materialCrossSection0 = 0.0;
585 G4DataVector cross;
586 cross.clear();
587 for ( G4int i=0; i < nElements; i++ )
588 {
589 G4double cr = materialSet->GetComponent(i)->FindValue(e);
590 materialCrossSection0 += cr;
591 cross.push_back(materialCrossSection0);
592 }
593
594 G4double random = G4UniformRand() * materialCrossSection0;
595
596 for (G4int k=0 ; k < nElements ; k++ )
597 {
598 if (random <= cross[k]) return (G4int) (*elementVector)[k]->GetZ();
599 }
600 // It should never get here
601 return 0;
602}
603
605 G4double e) const
606{
607 // Select randomly an element within the material, according to the weight determined
608 // by the cross sections in the data set
609
610 const G4Material* material = couple->GetMaterial();
611 G4Element* nullElement = 0;
612 G4int nElements = material->GetNumberOfElements();
613 const G4ElementVector* elementVector = material->GetElementVector();
614
615 // Special case: the material consists of one element
616 if (nElements == 1)
617 {
618 G4Element* element = (*elementVector)[0];
619 return element;
620 }
621 else
622 {
623 // Composite material
624
625 size_t materialIndex = couple->GetIndex();
626
627 G4VEMDataSet* materialSet = (*crossSections)[materialIndex];
628 G4double materialCrossSection0 = 0.0;
629 G4DataVector cross;
630 cross.clear();
631 for (G4int i=0; i<nElements; i++)
632 {
633 G4double cr = materialSet->GetComponent(i)->FindValue(e);
634 materialCrossSection0 += cr;
635 cross.push_back(materialCrossSection0);
636 }
637
638 G4double random = G4UniformRand() * materialCrossSection0;
639
640 for (G4int k=0 ; k < nElements ; k++ )
641 {
642 if (random <= cross[k]) return (*elementVector)[k];
643 }
644 // It should never end up here
645 G4cout << "G4VCrossSectionHandler::SelectRandomElement - no element found" << G4endl;
646 return nullElement;
647 }
648}
649
651{
652 // Select randomly a shell, according to the weight determined by the cross sections
653 // in the data set
654
655 // Note for later improvement: it would be useful to add a cache mechanism for already
656 // used shells to improve performance
657
658 G4int shell = 0;
659
660 G4double totCrossSection = FindValue(Z,e);
661 G4double random = G4UniformRand() * totCrossSection;
662 G4double partialSum = 0.;
663
664 G4VEMDataSet* dataSet = 0;
665 std::map<G4int,G4VEMDataSet*,std::less<G4int> >::const_iterator pos;
666 pos = dataMap.find(Z);
667 // The following is a workaround for STL ObjectSpace implementation,
668 // which does not support the standard and does not accept
669 // the syntax pos->first or pos->second
670 // if (pos != dataMap.end()) dataSet = pos->second;
671 if (pos != dataMap.end())
672 dataSet = (*pos).second;
673 else
674 {
675 G4Exception("G4VCrossSectionHandler::SelectRandomShell",
676 "em1011",FatalException,"unable to load the dataSet");
677 return 0;
678 }
679
680 size_t nShells = dataSet->NumberOfComponents();
681 for (size_t i=0; i<nShells; i++)
682 {
683 const G4VEMDataSet* shellDataSet = dataSet->GetComponent(i);
684 if (shellDataSet != 0)
685 {
686 G4double value = shellDataSet->FindValue(e);
687 partialSum += value;
688 if (random <= partialSum) return i;
689 }
690 }
691 // It should never get here
692 return shell;
693}
694
696{
697 const G4MaterialTable* materialTable = G4Material::GetMaterialTable();
698 if (materialTable == 0)
699 G4Exception("G4VCrossSectionHandler::ActiveElements",
700 "em1001",FatalException,"no MaterialTable found");
701
703
704 for (G4int mLocal2=0; mLocal2<nMaterials; mLocal2++)
705 {
706 const G4Material* material= (*materialTable)[mLocal2];
707 const G4ElementVector* elementVector = material->GetElementVector();
708 const G4int nElements = material->GetNumberOfElements();
709
710 for (G4int iEl=0; iEl<nElements; iEl++)
711 {
712 G4Element* element = (*elementVector)[iEl];
713 G4double Z = element->GetZ();
714 if (!(activeZ.contains(Z)) && Z >= zMin && Z <= zMax)
715 {
716 activeZ.push_back(Z);
717 }
718 }
719 }
720}
721
723{
725 return algorithm;
726}
727
729{
730 G4int n = 0;
731
732 std::map<G4int,G4VEMDataSet*,std::less<G4int> >::const_iterator pos;
733 pos = dataMap.find(Z);
734 if (pos!= dataMap.end())
735 {
736 G4VEMDataSet* dataSet = (*pos).second;
737 n = dataSet->NumberOfComponents();
738 }
739 else
740 {
741 G4cout << "WARNING: G4VCrossSectionHandler::NumberOfComponents did not "
742 << "find Z = "
743 << Z << G4endl;
744 }
745 return n;
746}
747
748
std::vector< G4Element * > G4ElementVector
@ FatalException
std::vector< G4Material * > G4MaterialTable
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
G4bool contains(const G4double &) const
G4double GetZ() const
Definition: G4Element.hh:131
const G4Material * GetMaterial() const
static const G4MaterialTable * GetMaterialTable()
Definition: G4Material.cc:562
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:189
static size_t GetNumberOfMaterials()
Definition: G4Material.cc:569
G4double GetZ() const
Definition: G4Material.cc:604
size_t GetNumberOfElements() const
Definition: G4Material.hh:185
const G4double * GetVecNbOfAtomsPerVolume() const
Definition: G4Material.hh:205
static G4ProductionCutsTable * GetProductionCutsTable()
G4VEMDataSet * BuildMeanFreePathForMaterials(const G4DataVector *energyCuts=0)
G4double ValueForMaterial(const G4Material *material, G4double e) const
void LoadShellData(const G4String &dataFile)
virtual std::vector< G4VEMDataSet * > * BuildCrossSectionsForMaterials(const G4DataVector &energyVector, const G4DataVector *energyCuts=0)=0
G4double FindValue(G4int Z, G4double e) const
G4int NumberOfComponents(G4int Z) const
void LoadData(const G4String &dataFile)
void LoadNonLogData(const G4String &dataFile)
G4int SelectRandomAtom(const G4MaterialCutsCouple *couple, G4double e) const
void Initialise(G4VDataSetAlgorithm *interpolation=0, G4double minE=250 *CLHEP::eV, G4double maxE=100 *CLHEP::GeV, G4int numberOfBins=200, G4double unitE=CLHEP::MeV, G4double unitData=CLHEP::barn, G4int minZ=1, G4int maxZ=99)
G4int SelectRandomShell(G4int Z, G4double e) const
const G4Element * SelectRandomElement(const G4MaterialCutsCouple *material, G4double e) const
virtual G4VDataSetAlgorithm * CreateInterpolation()
virtual G4VDataSetAlgorithm * Clone() const =0
virtual const G4VEMDataSet * GetComponent(G4int componentId) const =0
virtual G4double FindValue(G4double x, G4int componentId=0) const =0
virtual void AddComponent(G4VEMDataSet *dataSet)=0
virtual size_t NumberOfComponents(void) const =0
virtual G4bool LoadData(const G4String &fileName)=0
virtual void PrintData(void) const =0
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
#define DBL_MAX
Definition: templates.hh:83