Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4StatMFMicroManager.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// Hadronic Process: Nuclear De-excitations
30// by V. Lara
31
32
35
36
37// Copy constructor
39{
40 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroManager::copy_constructor meant to not be accessable");
41}
42
43// Operators
44
45G4StatMFMicroManager & G4StatMFMicroManager::
46operator=(const G4StatMFMicroManager & )
47{
48 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroManager::operator= meant to not be accessable");
49 return *this;
50}
51
52
54{
55 return false;
56}
57
58
60{
61 return true;
62}
63
64
65
66// constructor
67G4StatMFMicroManager::G4StatMFMicroManager(const G4Fragment & theFragment, const G4int multiplicity,
68 const G4double FreeIntE, const G4double SCompNuc) :
69 _Normalization(0.0)
70{
71 // Perform class initialization
72 Initialize(theFragment,multiplicity,FreeIntE,SCompNuc);
73}
74
75
76// destructor
78{
79 if (!_Partition.empty())
80 {
81 std::for_each(_Partition.begin(),_Partition.end(),
82 DeleteFragment());
83 }
84}
85
86
87
88// Initialization method
89
90void G4StatMFMicroManager::Initialize(const G4Fragment & theFragment, const G4int im,
91 const G4double FreeIntE, const G4double SCompNuc)
92{
93 G4int i;
94
95 G4double U = theFragment.GetExcitationEnergy();
96
97 G4double A = theFragment.GetA();
98 G4double Z = theFragment.GetZ();
99
100 // Statistical weights
101 _WW = 0.0;
102
103 // Mean breakup multiplicity
104 _MeanMultiplicity = 0.0;
105
106 // Mean channel temperature
107 _MeanTemperature = 0.0;
108
109 // Mean channel entropy
110 _MeanEntropy = 0.0;
111
112 // Keep fragment atomic numbers
113// G4int * FragmentAtomicNumbers = new G4int(static_cast<G4int>(A+0.5));
114// G4int * FragmentAtomicNumbers = new G4int(m);
115 G4int FragmentAtomicNumbers[4];
116
117 // We distribute A nucleons between m fragments mantaining the order
118 // FragmentAtomicNumbers[m-1]>FragmentAtomicNumbers[m-2]>...>FragmentAtomicNumbers[0]
119 // Our initial distribution is
120 // FragmentAtomicNumbers[m-1]=A, FragmentAtomicNumbers[m-2]=0, ..., FragmentAtomicNumbers[0]=0
121 FragmentAtomicNumbers[im-1] = static_cast<G4int>(A);
122 for (i = 0; i < (im - 1); i++) FragmentAtomicNumbers[i] = 0;
123
124 // We try to distribute A nucleons in partitions of m fragments
125 // MakePartition return true if it is possible
126 // and false if it is not
127 while (MakePartition(im,FragmentAtomicNumbers)) {
128 // Allowed partitions are stored and its probability calculated
129
130 G4StatMFMicroPartition * aPartition = new G4StatMFMicroPartition(static_cast<G4int>(A),
131 static_cast<G4int>(Z));
132 G4double PartitionProbability = 0.0;
133
134 for (i = im-1; i >= 0; i--) aPartition->SetPartitionFragment(FragmentAtomicNumbers[i]);
135 PartitionProbability = aPartition->CalcPartitionProbability(U,FreeIntE,SCompNuc);
136 _Partition.push_back(aPartition);
137
138 _WW += PartitionProbability;
139 _MeanMultiplicity += im*PartitionProbability;
140 _MeanTemperature += aPartition->GetTemperature() * PartitionProbability;
141 if (PartitionProbability > 0.0)
142 _MeanEntropy += PartitionProbability * aPartition->GetEntropy();
143
144 }
145
146
147 // garbage collection
148// delete [] FragmentAtomicNumbers;
149
150}
151
152
153G4bool G4StatMFMicroManager::MakePartition(const G4int k, G4int * ANumbers)
154 // Distributes A nucleons between k fragments
155 // mantaining the order ANumbers[k-1] > ANumbers[k-2] > ... > ANumbers[0]
156 // If it is possible returns true. In other case returns false
157{
158 G4int l = 1;
159 while (l < k) {
160 G4int tmp = ANumbers[l-1] + ANumbers[k-1];
161 ANumbers[l-1] += 1;
162 ANumbers[k-1] -= 1;
163 if (ANumbers[l-1] > ANumbers[l] || ANumbers[k-2] > ANumbers[k-1]) {
164 ANumbers[l-1] = 1;
165 ANumbers[k-1] = tmp - 1;
166 l++;
167 } else return true;
168 }
169 return false;
170}
171
172
173
175{
176 _Normalization = Norm;
177 _WW /= Norm;
178 _MeanMultiplicity /= Norm;
179 _MeanTemperature /= Norm;
180 _MeanEntropy /= Norm;
181
182 return;
183}
184
186 const G4double MeanT)
187{
188 G4double RandNumber = _Normalization * _WW * G4UniformRand();
189 G4double AccumWeight = 0.0;
190
191 for (std::vector<G4StatMFMicroPartition*>::iterator i = _Partition.begin();
192 i != _Partition.end(); ++i)
193 {
194 AccumWeight += (*i)->GetProbability();
195 if (RandNumber < AccumWeight)
196 return (*i)->ChooseZ(A0,Z0,MeanT);
197 }
198
199 throw G4HadronicException(__FILE__, __LINE__,
200 "G4StatMFMicroCanonical::ChooseChannel: Couldn't find a channel.");
201 return 0;
202}
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4UniformRand()
Definition: Randomize.hh:53
G4double GetExcitationEnergy() const
Definition: G4Fragment.hh:235
G4double GetZ() const
Definition: G4Fragment.hh:278
G4double GetA() const
Definition: G4Fragment.hh:283
void Normalize(const G4double Norm)
G4bool operator!=(const G4StatMFMicroManager &right) const
G4StatMFChannel * ChooseChannel(const G4double A0, const G4double Z0, const G4double MeanT)
G4bool operator==(const G4StatMFMicroManager &right) const
G4StatMFMicroManager(const G4Fragment &theFragment, const G4int multiplicity, const G4double FreeIntE, const G4double SCompNuc)
void SetPartitionFragment(const G4int anA)
G4double CalcPartitionProbability(const G4double U, const G4double FreeInternalE0, const G4double SCompound)