Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4HadronicBuilder.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// Geant4 class G4HadronicBuilder
28//
29// Author V.Ivanchenko 14.05.2020
30//
31
32#include "G4HadronicBuilder.hh"
33#include "G4HadParticles.hh"
34#include "G4HadProcesses.hh"
35
37#include "G4ParticleTable.hh"
39
41
42#include "G4TheoFSGenerator.hh"
43#include "G4FTFModel.hh"
46
47#include "G4QGSModel.hh"
48#include "G4QGSParticipants.hh"
51
52#include "G4CascadeInterface.hh"
56#include "G4HadronElastic.hh"
58
61
62#include "G4DecayTable.hh"
63#include "G4VDecayChannel.hh"
65
66void G4HadronicBuilder::BuildFTFP_BERT(const std::vector<G4int>& partList,
67 G4bool bert, const G4String& xsName) {
68
71
72 auto theModel = new G4TheoFSGenerator("FTFP");
73 auto theStringModel = new G4FTFModel();
74 theStringModel->SetFragmentationModel(new G4ExcitedStringDecay());
75 theModel->SetHighEnergyGenerator( theStringModel );
76 theModel->SetTransport( new G4GeneratorPrecompoundInterface() );
77 theModel->SetMaxEnergy( param->GetMaxEnergy() );
78
79 G4CascadeInterface* theCascade = nullptr;
80 if(bert) {
81 theCascade = new G4CascadeInterface();
82 theCascade->SetMaxEnergy( param->GetMaxEnergyTransitionFTF_Cascade() );
83 theModel->SetMinEnergy( param->GetMinEnergyTransitionFTF_Cascade() );
84 }
85
86 auto xsinel = G4HadProcesses::InelasticXS( xsName );
87
89 for( auto & pdg : partList ) {
90
91 auto part = table->FindParticle( pdg );
92 if ( part == nullptr ) { continue; }
93
94 auto hadi = new G4HadronInelasticProcess( part->GetParticleName()+"Inelastic", part );
95 hadi->AddDataSet( xsinel );
96 hadi->RegisterMe( theModel );
97 if( theCascade != nullptr ) hadi->RegisterMe( theCascade );
98 if( param->ApplyFactorXS() ) hadi->MultiplyCrossSectionBy( param->XSFactorHadronInelastic() );
99 ph->RegisterProcess(hadi, part);
100 }
101}
102
103void G4HadronicBuilder::BuildFTFQGSP_BERT(const std::vector<G4int>& partList,
104 G4bool bert, const G4String& xsName) {
105
108
109 auto theModel = new G4TheoFSGenerator("FTFQGSP");
110 auto theStringModel = new G4FTFModel();
111 theStringModel->SetFragmentationModel(new G4ExcitedStringDecay( new G4QGSMFragmentation() ) );
112 theModel->SetHighEnergyGenerator( theStringModel );
113 theModel->SetTransport( new G4GeneratorPrecompoundInterface() );
114 theModel->SetMaxEnergy( param->GetMaxEnergy() );
115
116 G4CascadeInterface* theCascade = nullptr;
117 if(bert) {
118 theCascade = new G4CascadeInterface();
119 theCascade->SetMaxEnergy( param->GetMaxEnergyTransitionFTF_Cascade() );
120 theModel->SetMinEnergy( param->GetMinEnergyTransitionFTF_Cascade() );
121 }
122
123 auto xsinel = G4HadProcesses::InelasticXS( xsName );
124
126 for( auto & pdg : partList ) {
127
128 auto part = table->FindParticle( pdg );
129 if ( part == nullptr ) { continue; }
130
131 auto hadi = new G4HadronInelasticProcess( part->GetParticleName()+"Inelastic", part );
132 hadi->AddDataSet( xsinel );
133 hadi->RegisterMe( theModel );
134 if( theCascade != nullptr ) hadi->RegisterMe( theCascade );
135 if( param->ApplyFactorXS() ) hadi->MultiplyCrossSectionBy( param->XSFactorHadronInelastic() );
136 ph->RegisterProcess(hadi, part);
137 }
138}
139
140void G4HadronicBuilder::BuildQGSP_FTFP_BERT(const std::vector<G4int>& partList,
141 G4bool bert, G4bool quasiElastic,
142 const G4String& xsName) {
143
146
147 auto theTransport = new G4GeneratorPrecompoundInterface();
148
149 auto theHEModel = new G4TheoFSGenerator("QGSP");
152 theHEModel->SetTransport( theTransport );
153 theHEModel->SetHighEnergyGenerator( theQGSModel );
154 if (quasiElastic) {
155 theHEModel->SetQuasiElasticChannel(new G4QuasiElasticChannel());
156 }
157 theHEModel->SetMinEnergy( param->GetMinEnergyTransitionQGS_FTF() );
158 theHEModel->SetMaxEnergy( param->GetMaxEnergy() );
159
160 auto theLEModel = new G4TheoFSGenerator("FTFP");
161 auto theFTFModel = new G4FTFModel();
162 theFTFModel->SetFragmentationModel(new G4ExcitedStringDecay());
163 theLEModel->SetHighEnergyGenerator( theFTFModel );
164 theLEModel->SetTransport( theTransport );
165 theLEModel->SetMaxEnergy( param->GetMaxEnergyTransitionQGS_FTF() );
166
167 G4CascadeInterface* theCascade = nullptr;
168 if(bert) {
169 theCascade = new G4CascadeInterface();
170 theCascade->SetMaxEnergy( param->GetMaxEnergyTransitionFTF_Cascade() );
171 theLEModel->SetMinEnergy( param->GetMinEnergyTransitionFTF_Cascade() );
172 }
173
174 auto xsinel = G4HadProcesses::InelasticXS( xsName );
175
177 for( auto & pdg : partList ) {
178
179 auto part = table->FindParticle( pdg );
180 if ( part == nullptr ) { continue; }
181
182 auto hadi = new G4HadronInelasticProcess( part->GetParticleName()+"Inelastic", part );
183 hadi->AddDataSet( xsinel );
184 hadi->RegisterMe( theHEModel );
185 hadi->RegisterMe( theLEModel );
186 if(theCascade != nullptr) hadi->RegisterMe( theCascade );
187 if( param->ApplyFactorXS() ) hadi->MultiplyCrossSectionBy( param->XSFactorHadronInelastic() );
188 ph->RegisterProcess(hadi, part);
189 }
190}
191
192void G4HadronicBuilder::BuildElastic(const std::vector<G4int>& partList) {
193
196
197 auto xsel = G4HadProcesses::ElasticXS("Glauber-Gribov");
198
199 auto elModel = new G4HadronElastic();
200 elModel->SetMaxEnergy( param->GetMaxEnergy() );
201
203 for( auto & pdg : partList ) {
204
205 auto part = table->FindParticle( pdg );
206 if ( part == nullptr ) { continue; }
207
208 auto hade = new G4HadronElasticProcess();
209 hade->AddDataSet( xsel );
210 hade->RegisterMe( elModel );
211 if( param->ApplyFactorXS() ) hade->MultiplyCrossSectionBy( param->XSFactorHadronElastic() );
212 ph->RegisterProcess(hade, part);
213 }
214}
215
217 // For hyperons, Bertini is used at low energies;
218 // for anti-hyperons, FTFP can be used down to zero kinetic energy.
219 BuildFTFP_BERT(G4HadParticles::GetHyperons(), true, "Glauber-Gribov");
220 BuildFTFP_BERT(G4HadParticles::GetAntiHyperons(), false, "Glauber-Gribov");
221}
222
224 // For hyperons, Bertini is used at low energies;
225 // for anti-hyperons, FTFP can be used down to zero kinetic energy.
226 BuildFTFQGSP_BERT(G4HadParticles::GetHyperons(), true, "Glauber-Gribov");
227 BuildFTFQGSP_BERT(G4HadParticles::GetAntiHyperons(), false, "Glauber-Gribov");
228}
229
231 // For hyperons, Bertini is used at low energies;
232 // for anti-hyperons, FTFP can be used down to zero kinetic energy.
233 // QGSP is used at high energies in all cases.
234 BuildQGSP_FTFP_BERT(G4HadParticles::GetHyperons(), true, qElastic, "Glauber-Gribov");
235 BuildQGSP_FTFP_BERT(G4HadParticles::GetAntiHyperons(), false, qElastic, "Glauber-Gribov");
236}
237
239 BuildFTFP_BERT(G4HadParticles::GetKaons(), true, "Glauber-Gribov");
240}
241
243 BuildFTFP_BERT(G4HadParticles::GetKaons(), true, "Glauber-Gribov");
244}
245
247 BuildQGSP_FTFP_BERT(G4HadParticles::GetKaons(), true, qElastic, "Glauber-Gribov");
248}
249
251 BuildFTFP_BERT(G4HadParticles::GetLightAntiIons(), false, "AntiAGlauber");
252}
253
254//void G4HadronicBuilder::BuildAntiLightIonsQGSP_FTFP(G4bool qElastic) {
255// Note: currently QGSP cannot be applied for any ion or anti-ion!
256// BuildQGSP_FTFP_BERT(G4HadParticles::GetLightAntiIons(), false, qElastic, "AntiAGlauber");
257//}
258
260 if( G4HadronicParameters::Instance()->EnableBCParticles() ) {
261 // Bertini is not applicable for charm and bottom hadrons, therefore FTFP is used
262 // down to zero kinetic energy (but at very low energies, a dummy model is used
263 // that returns the projectile heavy hadron in the final state).
264 BuildFTFP_BERT(G4HadParticles::GetBCHadrons(), false, "Glauber-Gribov");
266 }
267}
268
270 if( G4HadronicParameters::Instance()->EnableBCParticles() ) {
271 // Bertini is not applicable for charm and bottom hadrons, therefore FTFP is used
272 // down to zero kinetic energy (but at very low energies, a dummy model is used
273 // that returns the projectile heavy hadron in the final state).
274 BuildFTFQGSP_BERT(G4HadParticles::GetBCHadrons(), false, "Glauber-Gribov");
276 }
277}
278
280 if( G4HadronicParameters::Instance()->EnableBCParticles() ) {
281 // Bertini is not applicable for charm and bottom hadrons, therefore FTFP is used
282 // down to zero kinetic energy (but at very low energies, a dummy model is used
283 // that returns the projectile heavy hadron in the final state).
284 // QGSP is used at high energies in all cases.
285 BuildQGSP_FTFP_BERT(G4HadParticles::GetBCHadrons(), false, qElastic, "Glauber-Gribov");
287 }
288}
289
291 // Geant4 does not define the decay of most of charmed and bottom hadrons.
292 // The reason is that most of these heavy hadrons have many different
293 // decay channels, with a complex dynamics, quite different from the flat
294 // phase space kinematical treatment used in Geant4 for most of hadronic decays.
295 // High-energy experiments usually use dedicated Monte Carlo Event Generators
296 // for the decays of charmed and bottom hadrons; therefore, these heavy
297 // hadrons, which are passed to Geant4 as primary tracks, have pre-assigned
298 // decays. Moreover, no charmed or bottom secondary hadrons were created
299 // in Geant4 hadronic interactions before Geant4 10.7.
300 // With the extension of Geant4 hadronic interactions to charmed and bottom
301 // hadrons, in version Geant4 10.7, we do need to define decays in Geant4
302 // for these heavy hadrons, for two reasons:
303 // 1. For testing purposes, unless we pre-assign decays of heavy hadrons
304 // (as the HEP experiments normally do by using MC Event Generators);
305 // 2. To avoid crashes (due to missing decay channels) whenever charmed or
306 // bottom secondary hadrons are produced by Geant4 hadronic interactions,
307 // even with ordinary (i.e. not heavy) hadron projectiles, because in
308 // this case we cannot (easily!) pre-assign decays to them.
309 // Given that 1. is just a convenience for testing, and 2. happens rather
310 // rarely in practice - because very few primary energetic (i.e. boosted)
311 // heavy hadrons fly enough to reach the beam pipe or the tracker and
312 // having an inelastic interaction there, and the very low probability
313 // to create a heavy hadrons from the string fragmentation in ordinary
314 // (i.e. not heavy) hadronic interactions - there is no need in practice
315 // to define accurately the decays of heavy hadrons in Geant4.
316 // So, for our practical purposes, it is enough to define very simple,
317 // "dummy" decays of charmed and bottom hadrons.
318 // Here we use a single, fully hadronic channel, with 2 or 3 or 4
319 // daughters, for each of these heavy hadrons, assigning to this single
320 // decay channel a 100% branching ratio, although in reality such a
321 // channel is one between hundreds of possible ones (and therefore its
322 // real branching ratio is typical of a few per-cent); moreover, we treat
323 // the decay without any dynamics, i.e. with a flat phase space kinematical
324 // treatment.
325 // Note that some of the charmed and bottom hadrons such as SigmaC++,
326 // SigmaC+, SigmaC0, SigmaB+, SigmaB0 and SigmaB- have one dominant
327 // decay channel (to LambdaC/B + Pion) which is already defined in Geant4.
328 // This is not the case for EtaC, JPsi and Upsilon, whose decays need to
329 // be defined here (although they decay so quickly that their hadronic
330 // interactions can be neglected, as we do for Pi0 and Sigma0).
331 // Note that our definition of the decay tables for these heavy hadrons
332 // do not interfere with the pre-assign decays of primary charmed and
333 // bottom tracks made by the HEP experiments. In fact, pre-assign decays
334 // have priority over (i.e. override) decay tables.
335 static G4bool isFirstCall = true;
336 if ( ! isFirstCall ) return;
337 isFirstCall = false;
339 for ( auto & pdg : G4HadParticles::GetBCHadrons() ) {
340 auto part = particleTable->FindParticle( pdg );
341 if ( part == nullptr ) {
342 G4cout << "G4HadronicBuilder::BuildDecayTableForBCHadrons : ERROR ! particlePDG="
343 << pdg << " is not defined !" << G4endl;
344 continue;
345 }
346 if ( part->GetDecayTable() ) {
347 G4cout << "G4HadronicBuilder::BuildDecayTableForBCHadrons : WARNING ! particlePDG="
348 << pdg << " has already a decay table defined !" << G4endl;
349 continue;
350 }
351 G4DecayTable* decayTable = new G4DecayTable;
352 const G4int numberDecayChannels = 1;
353 G4VDecayChannel** mode = new G4VDecayChannel*[ numberDecayChannels ];
354 switch ( pdg ) {
355 // Charmed mesons
356 case 411 : // D+
357 mode[0] = new G4PhaseSpaceDecayChannel( "D+", 1.0, 3, "kaon-", "pi+", "pi+" );
358 break;
359 case -411 : // D-
360 mode[0] = new G4PhaseSpaceDecayChannel( "D-", 1.0, 3, "kaon+", "pi-", "pi-" );
361 break;
362 case 421 : // D0
363 mode[0] = new G4PhaseSpaceDecayChannel( "D0", 1.0, 3, "kaon-", "pi+", "pi0" );
364 break;
365 case -421 : // anti_D0
366 mode[0] = new G4PhaseSpaceDecayChannel( "anti_D0", 1.0, 3, "kaon+", "pi-", "pi0" );
367 break;
368 case 431 : // Ds+
369 mode[0] = new G4PhaseSpaceDecayChannel( "Ds+", 1.0, 3, "kaon+", "kaon-", "pi+" );
370 break;
371 case -431 : // Ds-
372 mode[0] = new G4PhaseSpaceDecayChannel( "Ds-", 1.0, 3, "kaon-", "kaon+", "pi-" );
373 break;
374 // Bottom mesons
375 case 521 : // B+
376 mode[0] = new G4PhaseSpaceDecayChannel( "B+", 1.0, 2, "anti_D0", "rho+" );
377 break;
378 case -521 : // B-
379 mode[0] = new G4PhaseSpaceDecayChannel( "B-", 1.0, 2, "D0", "rho-" );
380 break;
381 case 511 : // B0
382 mode[0] = new G4PhaseSpaceDecayChannel( "B0", 1.0, 2, "D-", "rho+" );
383 break;
384 case -511 : // anti_B0
385 mode[0] = new G4PhaseSpaceDecayChannel( "anti_B0", 1.0, 2, "D+", "rho-" );
386 break;
387 case 531 : // Bs0
388 mode[0] = new G4PhaseSpaceDecayChannel( "Bs0", 1.0, 2, "Ds-", "rho+" );
389 break;
390 case -531 : // anti_Bs0
391 mode[0] = new G4PhaseSpaceDecayChannel( "anti_Bs0", 1.0, 2, "Ds+", "rho-" );
392 break;
393 case 541 : // Bc+
394 mode[0] = new G4PhaseSpaceDecayChannel( "Bc+", 1.0, 2, "J/psi", "pi+" );
395 break;
396 case -541 : // Bc-
397 mode[0] = new G4PhaseSpaceDecayChannel( "Bc-", 1.0, 2, "J/psi", "pi-" );
398 break;
399 // Charmed baryons (and anti-baryons)
400 case 4122 : // lambda_c+
401 mode[0] = new G4PhaseSpaceDecayChannel( "lambda_c+", 1.0, 3, "proton", "kaon-", "pi+" );
402 break;
403 case -4122 : // anti_lambda_c+
404 mode[0] = new G4PhaseSpaceDecayChannel( "anti_lambda_c+", 1.0, 3, "anti_proton", "kaon+", "pi-" );
405 break;
406 case 4232 : // xi_c+
407 mode[0] = new G4PhaseSpaceDecayChannel( "xi_c+", 1.0, 3, "sigma+", "kaon-", "pi+" );
408 break;
409 case -4232 : // anti_xi_c+
410 mode[0] = new G4PhaseSpaceDecayChannel( "anti_xi_c+", 1.0, 3, "anti_sigma+", "kaon+", "pi-" );
411 break;
412 case 4132 : // xi_c0
413 mode[0] = new G4PhaseSpaceDecayChannel( "xi_c0", 1.0, 3, "lambda", "kaon-", "pi+" );
414 break;
415 case -4132 : // anti_xi_c0
416 mode[0] = new G4PhaseSpaceDecayChannel( "anti_xi_c0", 1.0, 3, "anti_lambda", "kaon+", "pi-" );
417 break;
418 case 4332 : // omega_c0
419 mode[0] = new G4PhaseSpaceDecayChannel( "omega_c0", 1.0, 3, "xi0", "kaon-", "pi+" );
420 break;
421 case -4332 : // anti_omega_c0
422 mode[0] = new G4PhaseSpaceDecayChannel( "anti_omega_c0", 1.0, 3, "anti_xi0", "kaon+", "pi-" );
423 break;
424 // Bottom baryons (and anti-baryons)
425 case 5122 : // lambda_b
426 mode[0] = new G4PhaseSpaceDecayChannel( "lambda_b", 1.0, 4, "lambda_c+", "pi+", "pi-", "pi-" );
427 break;
428 case -5122 : // anti_lambda_b
429 mode[0] = new G4PhaseSpaceDecayChannel( "anti_lambda_b", 1.0, 4, "anti_lambda_c+", "pi-", "pi+", "pi+" );
430 break;
431 case 5232 : // xi_b0
432 mode[0] = new G4PhaseSpaceDecayChannel( "xi_b0", 1.0, 3, "lambda_c+", "kaon-", "pi0" );
433 break;
434 case -5232 : // anti_xi_b0
435 mode[0] = new G4PhaseSpaceDecayChannel( "anti_xi_b0", 1.0, 3, "anti_lambda_c+", "kaon+", "pi0" );
436 break;
437 case 5132 : // xi_b-
438 mode[0] = new G4PhaseSpaceDecayChannel( "xi_b-", 1.0, 3, "lambda_c+", "kaon-", "pi-" );
439 break;
440 case -5132 : // anti_xi_b-
441 mode[0] = new G4PhaseSpaceDecayChannel( "anti_xi_b-", 1.0, 3, "anti_lambda_c+", "kaon+", "pi+" );
442 break;
443 case 5332 : // omega_b-
444 mode[0] = new G4PhaseSpaceDecayChannel( "omega_b-", 1.0, 3, "xi_c+", "kaon-", "pi-" );
445 break;
446 case -5332 : // anti_omega_b-
447 mode[0] = new G4PhaseSpaceDecayChannel( "anti_omega_b-", 1.0, 3, "anti_xi_c+", "kaon+", "pi+" );
448 break;
449 default :
450 G4cout << "G4HadronicBuilder::BuildDecayTableForBCHadrons : UNKNOWN particlePDG=" << pdg << G4endl;
451 } // End of the switch
452
453 for ( G4int index = 0; index < numberDecayChannels; ++index ) decayTable->Insert( mode[index] );
454 delete [] mode;
455 part->SetDecayTable( decayTable );
456 } // End of the for loop over heavy hadrons
457 // Add now the decay for etac, JPsi and Upsilon because these can be produced as
458 // secondaries in hadronic interactions, while they are not part of the heavy
459 // hadrons included in G4HadParticles::GetBCHadrons() because they live too shortly
460 // and therefore their hadronic interactions can be neglected (as we do for pi0 and sigma0).
461 if ( ! G4Etac::Definition()->GetDecayTable() ) {
462 G4DecayTable* decayTable = new G4DecayTable;
463 const G4int numberDecayChannels = 1;
464 G4VDecayChannel** mode = new G4VDecayChannel*[ numberDecayChannels ];
465 mode[0] = new G4PhaseSpaceDecayChannel( "etac", 1.0, 3, "eta", "pi+", "pi-" );
466 for ( G4int index = 0; index < numberDecayChannels; ++index ) decayTable->Insert( mode[index] );
467 delete [] mode;
468 G4Etac::Definition()->SetDecayTable( decayTable );
469 }
470 if ( ! G4JPsi::Definition()->GetDecayTable() ) {
471 G4DecayTable* decayTable = new G4DecayTable;
472 const G4int numberDecayChannels = 1;
473 G4VDecayChannel** mode = new G4VDecayChannel*[ numberDecayChannels ];
474 mode[0] = new G4PhaseSpaceDecayChannel( "J/psi", 1.0, 3, "pi0", "pi+", "pi-" );
475 for ( G4int index = 0; index < numberDecayChannels; ++index ) decayTable->Insert( mode[index] );
476 delete [] mode;
477 G4JPsi::Definition()->SetDecayTable( decayTable );
478 }
479 if ( ! G4Upsilon::Definition()->GetDecayTable() ) {
480 G4DecayTable* decayTable = new G4DecayTable;
481 const G4int numberDecayChannels = 1;
482 G4VDecayChannel** mode = new G4VDecayChannel*[ numberDecayChannels ];
483 mode[0] = new G4PhaseSpaceDecayChannel( "Upsilon", 1.0, 3, "eta_prime", "pi+", "pi-" );
484 for ( G4int index = 0; index < numberDecayChannels; ++index ) decayTable->Insert( mode[index] );
485 delete [] mode;
486 G4Upsilon::Definition()->SetDecayTable( decayTable );
487 }
488}
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
void Insert(G4VDecayChannel *aChannel)
Definition: G4DecayTable.cc:53
static G4Etac * Definition()
Definition: G4Etac.cc:52
static const std::vector< G4int > & GetBCHadrons()
static const std::vector< G4int > & GetAntiHyperons()
static const std::vector< G4int > & GetLightAntiIons()
static const std::vector< G4int > & GetKaons()
static const std::vector< G4int > & GetHyperons()
static G4CrossSectionElastic * ElasticXS(const G4String &componentName)
static G4CrossSectionInelastic * InelasticXS(const G4String &componentName)
static void BuildBCHadronsFTFP_BERT()
static void BuildElastic(const std::vector< G4int > &particleList)
static void BuildHyperonsFTFP_BERT()
static void BuildKaonsQGSP_FTFP_BERT(G4bool quasiElastic)
static void BuildKaonsFTFQGSP_BERT()
static void BuildBCHadronsFTFQGSP_BERT()
static void BuildHyperonsQGSP_FTFP_BERT(G4bool quasiElastic)
static void BuildHyperonsFTFQGSP_BERT()
static void BuildDecayTableForBCHadrons()
static void BuildKaonsFTFP_BERT()
static void BuildAntiLightIonsFTFP()
static void BuildBCHadronsQGSP_FTFP_BERT(G4bool quasiElastic)
void SetMaxEnergy(const G4double anEnergy)
static G4HadronicParameters * Instance()
G4double GetMinEnergyTransitionFTF_Cascade() const
G4double GetMinEnergyTransitionQGS_FTF() const
G4double GetMaxEnergyTransitionFTF_Cascade() const
G4double XSFactorHadronInelastic() const
G4double GetMaxEnergyTransitionQGS_FTF() const
G4double XSFactorHadronElastic() const
G4double GetMaxEnergy() const
static G4JPsi * Definition()
Definition: G4JPsi.cc:47
void SetDecayTable(G4DecayTable *aDecayTable)
G4ParticleDefinition * FindParticle(G4int PDGEncoding)
static G4ParticleTable * GetParticleTable()
G4bool RegisterProcess(G4VProcess *process, G4ParticleDefinition *particle)
static G4PhysicsListHelper * GetPhysicsListHelper()
static G4Upsilon * Definition()
Definition: G4Upsilon.cc:46
void SetFragmentationModel(G4VStringFragmentation *aModel)