Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4HadronicBuilder Class Reference

#include <G4HadronicBuilder.hh>

Static Public Member Functions

static void BuildElastic (const std::vector< G4int > &particleList)
 
static void BuildHyperonsFTFP_BERT ()
 
static void BuildHyperonsFTFQGSP_BERT ()
 
static void BuildHyperonsQGSP_FTFP_BERT (G4bool quasiElastic)
 
static void BuildKaonsFTFP_BERT ()
 
static void BuildKaonsFTFQGSP_BERT ()
 
static void BuildKaonsQGSP_FTFP_BERT (G4bool quasiElastic)
 
static void BuildAntiLightIonsFTFP ()
 
static void BuildBCHadronsFTFP_BERT ()
 
static void BuildBCHadronsFTFQGSP_BERT ()
 
static void BuildBCHadronsQGSP_FTFP_BERT (G4bool quasiElastic)
 
static void BuildDecayTableForBCHadrons ()
 

Detailed Description

Definition at line 40 of file G4HadronicBuilder.hh.

Member Function Documentation

◆ BuildAntiLightIonsFTFP()

void G4HadronicBuilder::BuildAntiLightIonsFTFP ( )
static

◆ BuildBCHadronsFTFP_BERT()

void G4HadronicBuilder::BuildBCHadronsFTFP_BERT ( )
static

Definition at line 259 of file G4HadronicBuilder.cc.

259 {
260 if( G4HadronicParameters::Instance()->EnableBCParticles() ) {
261 // Bertini is not applicable for charm and bottom hadrons, therefore FTFP is used
262 // down to zero kinetic energy (but at very low energies, a dummy model is used
263 // that returns the projectile heavy hadron in the final state).
264 BuildFTFP_BERT(G4HadParticles::GetBCHadrons(), false, "Glauber-Gribov");
266 }
267}
static const std::vector< G4int > & GetBCHadrons()
static void BuildDecayTableForBCHadrons()
static G4HadronicParameters * Instance()

Referenced by G4HadronInelasticQBBC::ConstructProcess(), G4HadronPhysicsFTFP_BERT::Others(), and G4HadronPhysicsINCLXX::Others().

◆ BuildBCHadronsFTFQGSP_BERT()

void G4HadronicBuilder::BuildBCHadronsFTFQGSP_BERT ( )
static

Definition at line 269 of file G4HadronicBuilder.cc.

269 {
270 if( G4HadronicParameters::Instance()->EnableBCParticles() ) {
271 // Bertini is not applicable for charm and bottom hadrons, therefore FTFP is used
272 // down to zero kinetic energy (but at very low energies, a dummy model is used
273 // that returns the projectile heavy hadron in the final state).
274 BuildFTFQGSP_BERT(G4HadParticles::GetBCHadrons(), false, "Glauber-Gribov");
276 }
277}

Referenced by G4HadronPhysicsFTFQGSP_BERT::ConstructProcess().

◆ BuildBCHadronsQGSP_FTFP_BERT()

void G4HadronicBuilder::BuildBCHadronsQGSP_FTFP_BERT ( G4bool  quasiElastic)
static

Definition at line 279 of file G4HadronicBuilder.cc.

279 {
280 if( G4HadronicParameters::Instance()->EnableBCParticles() ) {
281 // Bertini is not applicable for charm and bottom hadrons, therefore FTFP is used
282 // down to zero kinetic energy (but at very low energies, a dummy model is used
283 // that returns the projectile heavy hadron in the final state).
284 // QGSP is used at high energies in all cases.
285 BuildQGSP_FTFP_BERT(G4HadParticles::GetBCHadrons(), false, qElastic, "Glauber-Gribov");
287 }
288}

Referenced by G4HadronPhysicsQGSP_BERT::Others(), G4HadronPhysicsQGSP_BIC::Others(), and G4HadronPhysicsINCLXX::Others().

◆ BuildDecayTableForBCHadrons()

void G4HadronicBuilder::BuildDecayTableForBCHadrons ( )
static

Definition at line 290 of file G4HadronicBuilder.cc.

290 {
291 // Geant4 does not define the decay of most of charmed and bottom hadrons.
292 // The reason is that most of these heavy hadrons have many different
293 // decay channels, with a complex dynamics, quite different from the flat
294 // phase space kinematical treatment used in Geant4 for most of hadronic decays.
295 // High-energy experiments usually use dedicated Monte Carlo Event Generators
296 // for the decays of charmed and bottom hadrons; therefore, these heavy
297 // hadrons, which are passed to Geant4 as primary tracks, have pre-assigned
298 // decays. Moreover, no charmed or bottom secondary hadrons were created
299 // in Geant4 hadronic interactions before Geant4 10.7.
300 // With the extension of Geant4 hadronic interactions to charmed and bottom
301 // hadrons, in version Geant4 10.7, we do need to define decays in Geant4
302 // for these heavy hadrons, for two reasons:
303 // 1. For testing purposes, unless we pre-assign decays of heavy hadrons
304 // (as the HEP experiments normally do by using MC Event Generators);
305 // 2. To avoid crashes (due to missing decay channels) whenever charmed or
306 // bottom secondary hadrons are produced by Geant4 hadronic interactions,
307 // even with ordinary (i.e. not heavy) hadron projectiles, because in
308 // this case we cannot (easily!) pre-assign decays to them.
309 // Given that 1. is just a convenience for testing, and 2. happens rather
310 // rarely in practice - because very few primary energetic (i.e. boosted)
311 // heavy hadrons fly enough to reach the beam pipe or the tracker and
312 // having an inelastic interaction there, and the very low probability
313 // to create a heavy hadrons from the string fragmentation in ordinary
314 // (i.e. not heavy) hadronic interactions - there is no need in practice
315 // to define accurately the decays of heavy hadrons in Geant4.
316 // So, for our practical purposes, it is enough to define very simple,
317 // "dummy" decays of charmed and bottom hadrons.
318 // Here we use a single, fully hadronic channel, with 2 or 3 or 4
319 // daughters, for each of these heavy hadrons, assigning to this single
320 // decay channel a 100% branching ratio, although in reality such a
321 // channel is one between hundreds of possible ones (and therefore its
322 // real branching ratio is typical of a few per-cent); moreover, we treat
323 // the decay without any dynamics, i.e. with a flat phase space kinematical
324 // treatment.
325 // Note that some of the charmed and bottom hadrons such as SigmaC++,
326 // SigmaC+, SigmaC0, SigmaB+, SigmaB0 and SigmaB- have one dominant
327 // decay channel (to LambdaC/B + Pion) which is already defined in Geant4.
328 // This is not the case for EtaC, JPsi and Upsilon, whose decays need to
329 // be defined here (although they decay so quickly that their hadronic
330 // interactions can be neglected, as we do for Pi0 and Sigma0).
331 // Note that our definition of the decay tables for these heavy hadrons
332 // do not interfere with the pre-assign decays of primary charmed and
333 // bottom tracks made by the HEP experiments. In fact, pre-assign decays
334 // have priority over (i.e. override) decay tables.
335 static G4bool isFirstCall = true;
336 if ( ! isFirstCall ) return;
337 isFirstCall = false;
339 for ( auto & pdg : G4HadParticles::GetBCHadrons() ) {
340 auto part = particleTable->FindParticle( pdg );
341 if ( part == nullptr ) {
342 G4cout << "G4HadronicBuilder::BuildDecayTableForBCHadrons : ERROR ! particlePDG="
343 << pdg << " is not defined !" << G4endl;
344 continue;
345 }
346 if ( part->GetDecayTable() ) {
347 G4cout << "G4HadronicBuilder::BuildDecayTableForBCHadrons : WARNING ! particlePDG="
348 << pdg << " has already a decay table defined !" << G4endl;
349 continue;
350 }
351 G4DecayTable* decayTable = new G4DecayTable;
352 const G4int numberDecayChannels = 1;
353 G4VDecayChannel** mode = new G4VDecayChannel*[ numberDecayChannels ];
354 switch ( pdg ) {
355 // Charmed mesons
356 case 411 : // D+
357 mode[0] = new G4PhaseSpaceDecayChannel( "D+", 1.0, 3, "kaon-", "pi+", "pi+" );
358 break;
359 case -411 : // D-
360 mode[0] = new G4PhaseSpaceDecayChannel( "D-", 1.0, 3, "kaon+", "pi-", "pi-" );
361 break;
362 case 421 : // D0
363 mode[0] = new G4PhaseSpaceDecayChannel( "D0", 1.0, 3, "kaon-", "pi+", "pi0" );
364 break;
365 case -421 : // anti_D0
366 mode[0] = new G4PhaseSpaceDecayChannel( "anti_D0", 1.0, 3, "kaon+", "pi-", "pi0" );
367 break;
368 case 431 : // Ds+
369 mode[0] = new G4PhaseSpaceDecayChannel( "Ds+", 1.0, 3, "kaon+", "kaon-", "pi+" );
370 break;
371 case -431 : // Ds-
372 mode[0] = new G4PhaseSpaceDecayChannel( "Ds-", 1.0, 3, "kaon-", "kaon+", "pi-" );
373 break;
374 // Bottom mesons
375 case 521 : // B+
376 mode[0] = new G4PhaseSpaceDecayChannel( "B+", 1.0, 2, "anti_D0", "rho+" );
377 break;
378 case -521 : // B-
379 mode[0] = new G4PhaseSpaceDecayChannel( "B-", 1.0, 2, "D0", "rho-" );
380 break;
381 case 511 : // B0
382 mode[0] = new G4PhaseSpaceDecayChannel( "B0", 1.0, 2, "D-", "rho+" );
383 break;
384 case -511 : // anti_B0
385 mode[0] = new G4PhaseSpaceDecayChannel( "anti_B0", 1.0, 2, "D+", "rho-" );
386 break;
387 case 531 : // Bs0
388 mode[0] = new G4PhaseSpaceDecayChannel( "Bs0", 1.0, 2, "Ds-", "rho+" );
389 break;
390 case -531 : // anti_Bs0
391 mode[0] = new G4PhaseSpaceDecayChannel( "anti_Bs0", 1.0, 2, "Ds+", "rho-" );
392 break;
393 case 541 : // Bc+
394 mode[0] = new G4PhaseSpaceDecayChannel( "Bc+", 1.0, 2, "J/psi", "pi+" );
395 break;
396 case -541 : // Bc-
397 mode[0] = new G4PhaseSpaceDecayChannel( "Bc-", 1.0, 2, "J/psi", "pi-" );
398 break;
399 // Charmed baryons (and anti-baryons)
400 case 4122 : // lambda_c+
401 mode[0] = new G4PhaseSpaceDecayChannel( "lambda_c+", 1.0, 3, "proton", "kaon-", "pi+" );
402 break;
403 case -4122 : // anti_lambda_c+
404 mode[0] = new G4PhaseSpaceDecayChannel( "anti_lambda_c+", 1.0, 3, "anti_proton", "kaon+", "pi-" );
405 break;
406 case 4232 : // xi_c+
407 mode[0] = new G4PhaseSpaceDecayChannel( "xi_c+", 1.0, 3, "sigma+", "kaon-", "pi+" );
408 break;
409 case -4232 : // anti_xi_c+
410 mode[0] = new G4PhaseSpaceDecayChannel( "anti_xi_c+", 1.0, 3, "anti_sigma+", "kaon+", "pi-" );
411 break;
412 case 4132 : // xi_c0
413 mode[0] = new G4PhaseSpaceDecayChannel( "xi_c0", 1.0, 3, "lambda", "kaon-", "pi+" );
414 break;
415 case -4132 : // anti_xi_c0
416 mode[0] = new G4PhaseSpaceDecayChannel( "anti_xi_c0", 1.0, 3, "anti_lambda", "kaon+", "pi-" );
417 break;
418 case 4332 : // omega_c0
419 mode[0] = new G4PhaseSpaceDecayChannel( "omega_c0", 1.0, 3, "xi0", "kaon-", "pi+" );
420 break;
421 case -4332 : // anti_omega_c0
422 mode[0] = new G4PhaseSpaceDecayChannel( "anti_omega_c0", 1.0, 3, "anti_xi0", "kaon+", "pi-" );
423 break;
424 // Bottom baryons (and anti-baryons)
425 case 5122 : // lambda_b
426 mode[0] = new G4PhaseSpaceDecayChannel( "lambda_b", 1.0, 4, "lambda_c+", "pi+", "pi-", "pi-" );
427 break;
428 case -5122 : // anti_lambda_b
429 mode[0] = new G4PhaseSpaceDecayChannel( "anti_lambda_b", 1.0, 4, "anti_lambda_c+", "pi-", "pi+", "pi+" );
430 break;
431 case 5232 : // xi_b0
432 mode[0] = new G4PhaseSpaceDecayChannel( "xi_b0", 1.0, 3, "lambda_c+", "kaon-", "pi0" );
433 break;
434 case -5232 : // anti_xi_b0
435 mode[0] = new G4PhaseSpaceDecayChannel( "anti_xi_b0", 1.0, 3, "anti_lambda_c+", "kaon+", "pi0" );
436 break;
437 case 5132 : // xi_b-
438 mode[0] = new G4PhaseSpaceDecayChannel( "xi_b-", 1.0, 3, "lambda_c+", "kaon-", "pi-" );
439 break;
440 case -5132 : // anti_xi_b-
441 mode[0] = new G4PhaseSpaceDecayChannel( "anti_xi_b-", 1.0, 3, "anti_lambda_c+", "kaon+", "pi+" );
442 break;
443 case 5332 : // omega_b-
444 mode[0] = new G4PhaseSpaceDecayChannel( "omega_b-", 1.0, 3, "xi_c+", "kaon-", "pi-" );
445 break;
446 case -5332 : // anti_omega_b-
447 mode[0] = new G4PhaseSpaceDecayChannel( "anti_omega_b-", 1.0, 3, "anti_xi_c+", "kaon+", "pi+" );
448 break;
449 default :
450 G4cout << "G4HadronicBuilder::BuildDecayTableForBCHadrons : UNKNOWN particlePDG=" << pdg << G4endl;
451 } // End of the switch
452
453 for ( G4int index = 0; index < numberDecayChannels; ++index ) decayTable->Insert( mode[index] );
454 delete [] mode;
455 part->SetDecayTable( decayTable );
456 } // End of the for loop over heavy hadrons
457 // Add now the decay for etac, JPsi and Upsilon because these can be produced as
458 // secondaries in hadronic interactions, while they are not part of the heavy
459 // hadrons included in G4HadParticles::GetBCHadrons() because they live too shortly
460 // and therefore their hadronic interactions can be neglected (as we do for pi0 and sigma0).
461 if ( ! G4Etac::Definition()->GetDecayTable() ) {
462 G4DecayTable* decayTable = new G4DecayTable;
463 const G4int numberDecayChannels = 1;
464 G4VDecayChannel** mode = new G4VDecayChannel*[ numberDecayChannels ];
465 mode[0] = new G4PhaseSpaceDecayChannel( "etac", 1.0, 3, "eta", "pi+", "pi-" );
466 for ( G4int index = 0; index < numberDecayChannels; ++index ) decayTable->Insert( mode[index] );
467 delete [] mode;
468 G4Etac::Definition()->SetDecayTable( decayTable );
469 }
470 if ( ! G4JPsi::Definition()->GetDecayTable() ) {
471 G4DecayTable* decayTable = new G4DecayTable;
472 const G4int numberDecayChannels = 1;
473 G4VDecayChannel** mode = new G4VDecayChannel*[ numberDecayChannels ];
474 mode[0] = new G4PhaseSpaceDecayChannel( "J/psi", 1.0, 3, "pi0", "pi+", "pi-" );
475 for ( G4int index = 0; index < numberDecayChannels; ++index ) decayTable->Insert( mode[index] );
476 delete [] mode;
477 G4JPsi::Definition()->SetDecayTable( decayTable );
478 }
479 if ( ! G4Upsilon::Definition()->GetDecayTable() ) {
480 G4DecayTable* decayTable = new G4DecayTable;
481 const G4int numberDecayChannels = 1;
482 G4VDecayChannel** mode = new G4VDecayChannel*[ numberDecayChannels ];
483 mode[0] = new G4PhaseSpaceDecayChannel( "Upsilon", 1.0, 3, "eta_prime", "pi+", "pi-" );
484 for ( G4int index = 0; index < numberDecayChannels; ++index ) decayTable->Insert( mode[index] );
485 delete [] mode;
486 G4Upsilon::Definition()->SetDecayTable( decayTable );
487 }
488}
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
void Insert(G4VDecayChannel *aChannel)
Definition: G4DecayTable.cc:53
static G4Etac * Definition()
Definition: G4Etac.cc:52
static G4JPsi * Definition()
Definition: G4JPsi.cc:47
void SetDecayTable(G4DecayTable *aDecayTable)
G4ParticleDefinition * FindParticle(G4int PDGEncoding)
static G4ParticleTable * GetParticleTable()
static G4Upsilon * Definition()
Definition: G4Upsilon.cc:46

Referenced by BuildBCHadronsFTFP_BERT(), BuildBCHadronsFTFQGSP_BERT(), and BuildBCHadronsQGSP_FTFP_BERT().

◆ BuildElastic()

void G4HadronicBuilder::BuildElastic ( const std::vector< G4int > &  particleList)
static

Definition at line 192 of file G4HadronicBuilder.cc.

192 {
193
196
197 auto xsel = G4HadProcesses::ElasticXS("Glauber-Gribov");
198
199 auto elModel = new G4HadronElastic();
200 elModel->SetMaxEnergy( param->GetMaxEnergy() );
201
203 for( auto & pdg : partList ) {
204
205 auto part = table->FindParticle( pdg );
206 if ( part == nullptr ) { continue; }
207
208 auto hade = new G4HadronElasticProcess();
209 hade->AddDataSet( xsel );
210 hade->RegisterMe( elModel );
211 if( param->ApplyFactorXS() ) hade->MultiplyCrossSectionBy( param->XSFactorHadronElastic() );
212 ph->RegisterProcess(hade, part);
213 }
214}
static G4CrossSectionElastic * ElasticXS(const G4String &componentName)
G4double XSFactorHadronElastic() const
G4double GetMaxEnergy() const
G4bool RegisterProcess(G4VProcess *process, G4ParticleDefinition *particle)
static G4PhysicsListHelper * GetPhysicsListHelper()

Referenced by G4HadronElasticPhysics::ConstructProcess(), and G4HadronHElasticPhysics::ConstructProcess().

◆ BuildHyperonsFTFP_BERT()

void G4HadronicBuilder::BuildHyperonsFTFP_BERT ( )
static

Definition at line 216 of file G4HadronicBuilder.cc.

216 {
217 // For hyperons, Bertini is used at low energies;
218 // for anti-hyperons, FTFP can be used down to zero kinetic energy.
219 BuildFTFP_BERT(G4HadParticles::GetHyperons(), true, "Glauber-Gribov");
220 BuildFTFP_BERT(G4HadParticles::GetAntiHyperons(), false, "Glauber-Gribov");
221}
static const std::vector< G4int > & GetAntiHyperons()
static const std::vector< G4int > & GetHyperons()

Referenced by G4HadronInelasticQBBC::ConstructProcess(), G4HadronPhysicsFTFP_BERT::Others(), and G4HadronPhysicsINCLXX::Others().

◆ BuildHyperonsFTFQGSP_BERT()

void G4HadronicBuilder::BuildHyperonsFTFQGSP_BERT ( )
static

Definition at line 223 of file G4HadronicBuilder.cc.

223 {
224 // For hyperons, Bertini is used at low energies;
225 // for anti-hyperons, FTFP can be used down to zero kinetic energy.
226 BuildFTFQGSP_BERT(G4HadParticles::GetHyperons(), true, "Glauber-Gribov");
227 BuildFTFQGSP_BERT(G4HadParticles::GetAntiHyperons(), false, "Glauber-Gribov");
228}

Referenced by G4HadronPhysicsFTFQGSP_BERT::ConstructProcess().

◆ BuildHyperonsQGSP_FTFP_BERT()

void G4HadronicBuilder::BuildHyperonsQGSP_FTFP_BERT ( G4bool  quasiElastic)
static

Definition at line 230 of file G4HadronicBuilder.cc.

230 {
231 // For hyperons, Bertini is used at low energies;
232 // for anti-hyperons, FTFP can be used down to zero kinetic energy.
233 // QGSP is used at high energies in all cases.
234 BuildQGSP_FTFP_BERT(G4HadParticles::GetHyperons(), true, qElastic, "Glauber-Gribov");
235 BuildQGSP_FTFP_BERT(G4HadParticles::GetAntiHyperons(), false, qElastic, "Glauber-Gribov");
236}

Referenced by G4HadronPhysicsQGSP_BERT::Others(), G4HadronPhysicsQGSP_BIC::Others(), and G4HadronPhysicsINCLXX::Others().

◆ BuildKaonsFTFP_BERT()

void G4HadronicBuilder::BuildKaonsFTFP_BERT ( )
static

Definition at line 238 of file G4HadronicBuilder.cc.

238 {
239 BuildFTFP_BERT(G4HadParticles::GetKaons(), true, "Glauber-Gribov");
240}
static const std::vector< G4int > & GetKaons()

Referenced by G4HadronInelasticQBBC::ConstructProcess().

◆ BuildKaonsFTFQGSP_BERT()

void G4HadronicBuilder::BuildKaonsFTFQGSP_BERT ( )
static

Definition at line 242 of file G4HadronicBuilder.cc.

242 {
243 BuildFTFP_BERT(G4HadParticles::GetKaons(), true, "Glauber-Gribov");
244}

Referenced by G4HadronPhysicsFTFQGSP_BERT::ConstructProcess().

◆ BuildKaonsQGSP_FTFP_BERT()

void G4HadronicBuilder::BuildKaonsQGSP_FTFP_BERT ( G4bool  quasiElastic)
static

Definition at line 246 of file G4HadronicBuilder.cc.

246 {
247 BuildQGSP_FTFP_BERT(G4HadParticles::GetKaons(), true, qElastic, "Glauber-Gribov");
248}

The documentation for this class was generated from the following files: